国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片

張俊林:MCST樹搜索會是復刻OpenAI O1/O3的有效方法嗎

AIGC動態8個月前發布 智猩猩GenAI
495 0 0

本文介紹R1和K1.5以及MCST方法的主要思路。

張俊林:MCST樹搜索會是復刻OpenAI O1/O3的有效方法嗎

原標題:張俊林:MCST樹搜索會是復刻OpenAI O1/O3的有效方法嗎
文章來源:智猩猩GenAI
內容字數:18671字

DeepSeek R1,Kimi K1.5,and rStar-Math: A Comparative Analysis of Large Language Model Reasoning

This article summarizes the key findings of Zhang Junlin’s analysis of three prominent approaches to enhancing the logical reasoning capabilities of large language models (LLMs): DeepSeek R1,Kimi K1.5,and Microsoft’s rStar-Math. The author highlights the similarities,differences,and potential synergies between these methods,emphasizing the importance of high-quality logical trajectory data.

1. DeepSeek R1 and Kimi K1.5: Similar Approaches,Different Scales

Both DeepSeek R1 and Kimi K1.5 employ a two-stage process: Supervised Fine-tuning (SFT) followed by Reinforcement Learning from Human Feedback (RLHF). Kimi K1.5 can be viewed as a special case of R1. Both methods generate chain-of-thought (COT) data,where the model’s reasoning process is explicitly shown. Crucially,both tolerate errors in intermediate steps of the COT,demonstrating that perfect reasoning in every step is not necessary for achieving strong overall performance. This suggests that LLMs may learn logical connections between fragments of reasoning rather than mastering the entire chain flawlessly,a process potentially more efficient than human reasoning.

2. The Significance of Imperfect Reasoning Trajectories

A key finding is that training data containing intermediate errors in the COT can still yield powerful LLMs. The percentage of errors seems to be more important than the mere presence of errors. High-quality COT data is characterized by a low proportion of erroneous intermediate steps. Multi-stage training,as seen in DeepSeek R1,iteratively refines the quality of the COT data,reducing the error rate in each subsequent stage. This iterative process suggests LLMs might be superior learners of complex reasoning compared to humans.

3. rStar-Math: A Successful MCST Approach

Microsoft’s rStar-Math employs a Monte Carlo Tree Search (MCST) approach combined with a Process Reward Model (PRM). Unlike previous attempts,rStar-Math demonstrates the viability of MCST for LLM reasoning,achieving impressive results with relatively modest computational resources. Its success hinges on a multi-stage training process (similar to curriculum learning) and a refined PRM that incorporates multiple evaluation strategies to improve the accuracy of reward assessment.

4. The Relationship Between R1/K1.5 and MCST

The author argues that the methods used in DeepSeek R1 and Kimi K1.5 are special cases of MCST. They represent random sampling within the search space,while MCST aims for efficient exploration of high-quality paths. By integrating the RL stage of R1 into an effective MCST framework like rStar-Math,a more general and potentially superior method – “MCST++” – can be derived. This combined approach would leverage the search efficiency of MCST with the refinement power of RL.

5. Data Quality as the Primary Bottleneck

The paramount factor in improving LLM reasoning is the acquisition of high-quality COT data. This involves obtaining diverse and challenging problem sets and employing effective methods (like R1’s iterative refinement or MCST) to generate COTs with minimal erroneous intermediate steps. The origin of the data (e.g.,human-generated,model-generated,distilled) is secondary to its quality.

6. A Low-Cost Method for Enhancing LLM Reasoning

The author proposes a low-cost,rapid method for enhancing LLM reasoning capabilities using readily available resources: (1) gather a large set of problems and answers; (2) augment data through problem reformulation; (3) utilize open-source models like DeepSeek R1; (4) generate COT data using R1; (5) optionally,filter low-quality COTs using a robust PRM; (6) fine-tune a base model using a curriculum learning approach; and (7) optionally,incorporate negative examples using DPO. While effective,this method lacks the self-improvement mechanism of iterative models like R1 or MCST++.


聯系作者

文章來源:智猩猩GenAI
作者微信:
作者簡介:智猩猩旗下賬號,專注于生成式人工智能,主要分享技術文章、論文成果與產品信息。

閱讀原文
? 版權聲明
蟬鏡AI數字人

相關文章

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        亚洲一区自拍偷拍| 成年人午夜久久久| 色就色 综合激情| 久久综合视频网| 国产一区二区视频在线| 色先锋资源久久综合| 亚洲视频狠狠干| 欧美精品色综合| 久久er99热精品一区二区| 久久亚洲免费视频| 99riav一区二区三区| 夜夜精品视频一区二区 | 蜜芽一区二区三区| 久久久精品蜜桃| 91视频免费看| 蜜臀av性久久久久蜜臀aⅴ| 国产亚洲午夜高清国产拍精品 | 91国产丝袜在线播放| 日韩精品电影在线| 国产欧美一区二区三区在线看蜜臀 | 亚洲精品免费在线| 久久先锋影音av| 一本色道久久综合亚洲aⅴ蜜桃 | 亚洲午夜在线电影| 国产午夜一区二区三区| 在线观看日韩一区| 国产精品99久久久久久久vr| 一区二区在线免费| 欧美国产日韩精品免费观看| 欧美色图片你懂的| 国产精品系列在线播放| 亚洲在线视频免费观看| 91精品国产91久久综合桃花| 国产精品911| 免费看黄色91| 亚洲午夜国产一区99re久久| 久久女同精品一区二区| 欧美色精品在线视频| 成人精品鲁一区一区二区| 青椒成人免费视频| 亚洲国产一区在线观看| 国产精品久久99| 国产精品天天看| 久久精品视频免费观看| 91精品国产综合久久久蜜臀粉嫩| 91豆麻精品91久久久久久| 99国产精品国产精品毛片| 成人黄页毛片网站| 国产成人精品aa毛片| 美腿丝袜一区二区三区| 蜜桃91丨九色丨蝌蚪91桃色| 亚洲成av人片| 亚洲成av人片在www色猫咪| 一区二区久久久久| 亚洲午夜一二三区视频| 亚洲国产色一区| 三级欧美在线一区| 久久爱另类一区二区小说| 久久精品久久久精品美女| 免费精品视频在线| 国产综合色精品一区二区三区| 久久福利视频一区二区| 激情欧美日韩一区二区| 狠狠色狠狠色综合系列| 国产精品亚洲一区二区三区妖精 | 国产色产综合产在线视频| 精品国产乱码久久久久久影片| 精品久久久久久久人人人人传媒| 日韩欧美色电影| 国产女人18水真多18精品一级做| 国产片一区二区三区| 亚洲欧洲成人av每日更新| 韩国av一区二区| 国产麻豆一精品一av一免费| 国产高清成人在线| 一本一道综合狠狠老| 欧美日本高清视频在线观看| 欧美变态口味重另类| 国产亚洲欧美中文| 一区二区三区精品| 毛片不卡一区二区| 99在线精品免费| 欧美一区二区在线播放| 久久久精品免费观看| 樱花草国产18久久久久| 开心九九激情九九欧美日韩精美视频电影| 久久se精品一区精品二区| 成人午夜伦理影院| 欧美一区二区黄色| 亚洲日韩欧美一区二区在线| 视频一区二区三区在线| 丁香一区二区三区| 欧美一级精品在线| 亚洲精品综合在线| 麻豆久久一区二区| 在线精品国精品国产尤物884a| 日韩三级.com| 亚洲综合色丁香婷婷六月图片| 韩国女主播一区| 欧美日韩一区二区电影| 亚洲国产精品精华液2区45| 婷婷夜色潮精品综合在线| av中文字幕亚洲| 日韩欧美一区二区三区在线| 国产精品国产三级国产普通话99 | 欧洲精品一区二区| 久久婷婷成人综合色| 亚洲五码中文字幕| 成人黄动漫网站免费app| 欧美一卡2卡3卡4卡| 一区二区三区在线观看国产| 国产精品一卡二| 日韩美女在线视频| 天堂午夜影视日韩欧美一区二区| 风流少妇一区二区| 久久天堂av综合合色蜜桃网| 日韩国产精品久久| 欧美日韩一区二区电影| 国产精品成人免费在线| 国产成人亚洲精品青草天美| 日韩欧美在线不卡| 日韩电影网1区2区| 欧美私人免费视频| 一区二区三区成人在线视频| 成人黄色在线看| 国产欧美日韩麻豆91| 国产一区二区视频在线| 久久影院视频免费| 国产精品一色哟哟哟| 久久精品在线观看| 欧美日韩成人综合天天影院 | 亚洲自拍偷拍综合| 色成人在线视频| 亚洲一区二区四区蜜桃| 欧美性大战久久| 五月婷婷欧美视频| 日韩美女一区二区三区| 久久9热精品视频| 欧美激情一区二区三区四区| 国产激情一区二区三区| 国产欧美精品在线观看| 成人激情av网| 亚洲午夜日本在线观看| 91精品一区二区三区久久久久久| 秋霞国产午夜精品免费视频| 欧美精品一区二区三区一线天视频| 韩日精品视频一区| 国产精品乱码一区二区三区软件 | 国产精品正在播放| 最新高清无码专区| 欧美色成人综合| 美女一区二区在线观看| 精品国产乱码久久久久久1区2区| 国产精品99久久不卡二区| 国产精品毛片久久久久久久| av电影在线观看不卡| 亚洲成人自拍一区| www国产成人免费观看视频 深夜成人网| 国产一区二区三区日韩| 国产精品福利电影一区二区三区四区| 91麻豆6部合集magnet| 日本美女一区二区| 国产亚洲美州欧州综合国| 色婷婷久久久久swag精品| 另类中文字幕网| 日韩理论在线观看| 日韩欧美一二三区| 色悠悠亚洲一区二区| 精久久久久久久久久久| 亚洲人成网站色在线观看| 欧美一区二区三区四区久久 | 久久看人人爽人人| 欧美日韩在线播放三区| 国产一区二区福利| 亚洲成在人线免费| 国产精品污网站| 6080亚洲精品一区二区| av电影在线观看完整版一区二区| 日韩va亚洲va欧美va久久| 国产精品久久久久久久久免费樱桃| 欧美精选在线播放| 91在线视频免费91| 国产高清精品在线| 久久99久久精品| 青草国产精品久久久久久| 一区二区三区精品在线| 国产精品素人视频| 欧美成人激情免费网| 欧美精品xxxxbbbb| 欧美在线综合视频| 日本韩国欧美一区| 97精品电影院| 9i看片成人免费高清| 丁香桃色午夜亚洲一区二区三区| 蜜桃av噜噜一区| 理论片日本一区| 美脚の诱脚舐め脚责91 | 91麻豆福利精品推荐| 高清不卡在线观看| 国产一区二区久久|