国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片

張俊林:MCST樹搜索會是復刻OpenAI O1/O3的有效方法嗎

AIGC動態8個月前發布 智猩猩GenAI
495 0 0

本文介紹R1和K1.5以及MCST方法的主要思路。

張俊林:MCST樹搜索會是復刻OpenAI O1/O3的有效方法嗎

原標題:張俊林:MCST樹搜索會是復刻OpenAI O1/O3的有效方法嗎
文章來源:智猩猩GenAI
內容字數:18671字

DeepSeek R1,Kimi K1.5,and rStar-Math: A Comparative Analysis of Large Language Model Reasoning

This article summarizes the key findings of Zhang Junlin’s analysis of three prominent approaches to enhancing the logical reasoning capabilities of large language models (LLMs): DeepSeek R1,Kimi K1.5,and Microsoft’s rStar-Math. The author highlights the similarities,differences,and potential synergies between these methods,emphasizing the importance of high-quality logical trajectory data.

1. DeepSeek R1 and Kimi K1.5: Similar Approaches,Different Scales

Both DeepSeek R1 and Kimi K1.5 employ a two-stage process: Supervised Fine-tuning (SFT) followed by Reinforcement Learning from Human Feedback (RLHF). Kimi K1.5 can be viewed as a special case of R1. Both methods generate chain-of-thought (COT) data,where the model’s reasoning process is explicitly shown. Crucially,both tolerate errors in intermediate steps of the COT,demonstrating that perfect reasoning in every step is not necessary for achieving strong overall performance. This suggests that LLMs may learn logical connections between fragments of reasoning rather than mastering the entire chain flawlessly,a process potentially more efficient than human reasoning.

2. The Significance of Imperfect Reasoning Trajectories

A key finding is that training data containing intermediate errors in the COT can still yield powerful LLMs. The percentage of errors seems to be more important than the mere presence of errors. High-quality COT data is characterized by a low proportion of erroneous intermediate steps. Multi-stage training,as seen in DeepSeek R1,iteratively refines the quality of the COT data,reducing the error rate in each subsequent stage. This iterative process suggests LLMs might be superior learners of complex reasoning compared to humans.

3. rStar-Math: A Successful MCST Approach

Microsoft’s rStar-Math employs a Monte Carlo Tree Search (MCST) approach combined with a Process Reward Model (PRM). Unlike previous attempts,rStar-Math demonstrates the viability of MCST for LLM reasoning,achieving impressive results with relatively modest computational resources. Its success hinges on a multi-stage training process (similar to curriculum learning) and a refined PRM that incorporates multiple evaluation strategies to improve the accuracy of reward assessment.

4. The Relationship Between R1/K1.5 and MCST

The author argues that the methods used in DeepSeek R1 and Kimi K1.5 are special cases of MCST. They represent random sampling within the search space,while MCST aims for efficient exploration of high-quality paths. By integrating the RL stage of R1 into an effective MCST framework like rStar-Math,a more general and potentially superior method – “MCST++” – can be derived. This combined approach would leverage the search efficiency of MCST with the refinement power of RL.

5. Data Quality as the Primary Bottleneck

The paramount factor in improving LLM reasoning is the acquisition of high-quality COT data. This involves obtaining diverse and challenging problem sets and employing effective methods (like R1’s iterative refinement or MCST) to generate COTs with minimal erroneous intermediate steps. The origin of the data (e.g.,human-generated,model-generated,distilled) is secondary to its quality.

6. A Low-Cost Method for Enhancing LLM Reasoning

The author proposes a low-cost,rapid method for enhancing LLM reasoning capabilities using readily available resources: (1) gather a large set of problems and answers; (2) augment data through problem reformulation; (3) utilize open-source models like DeepSeek R1; (4) generate COT data using R1; (5) optionally,filter low-quality COTs using a robust PRM; (6) fine-tune a base model using a curriculum learning approach; and (7) optionally,incorporate negative examples using DPO. While effective,this method lacks the self-improvement mechanism of iterative models like R1 or MCST++.


聯系作者

文章來源:智猩猩GenAI
作者微信:
作者簡介:智猩猩旗下賬號,專注于生成式人工智能,主要分享技術文章、論文成果與產品信息。

閱讀原文
? 版權聲明
蟬鏡AI數字人

相關文章

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        亚洲天天做日日做天天谢日日欢 | 欧美精品xxxxbbbb| 亚洲精品国产第一综合99久久| 国产成人精品亚洲午夜麻豆| 国产精品国产自产拍高清av| 色婷婷av一区| 免费亚洲电影在线| 国产精品午夜免费| 欧美无砖砖区免费| 久久国产人妖系列| 亚洲欧美日韩久久精品| 777欧美精品| 国产成人精品亚洲777人妖| 一区二区三区四区亚洲| 26uuuu精品一区二区| 成人午夜激情视频| 午夜成人在线视频| 久久久av毛片精品| 欧美日韩一级二级| 成人成人成人在线视频| 亚洲成人精品一区| 亚洲精品一区二区三区99| 99视频一区二区| 麻豆国产一区二区| 亚洲男女毛片无遮挡| 日韩情涩欧美日韩视频| 97超碰欧美中文字幕| 琪琪久久久久日韩精品| 中文字幕一区二区在线观看 | 国产主播一区二区| 一级精品视频在线观看宜春院| 欧美tickle裸体挠脚心vk| 欧美午夜影院一区| 国产精品一卡二卡| 日韩高清不卡一区二区三区| 国产精品视频一二| 2023国产精品| 欧美一区二区三区在线观看 | 在线成人小视频| 91女人视频在线观看| 国产精品99久久久久| 日韩精品福利网| 一区二区在线免费观看| 国产精品福利影院| 国产女主播一区| 精品成a人在线观看| 91精品国产91久久综合桃花| 欧洲精品一区二区三区在线观看| 不卡视频免费播放| 国产成人午夜视频| 国产成人丝袜美腿| 久久爱www久久做| 久久精品久久精品| 久久精品av麻豆的观看方式| 午夜电影网亚洲视频| 亚洲成a人片在线观看中文| 亚洲精品视频自拍| 亚洲精品国产a| 亚洲成人在线网站| 午夜精品久久久久久久久久| 亚洲资源在线观看| 亚洲高清久久久| 亚洲第一综合色| 麻豆国产精品官网| 韩国理伦片一区二区三区在线播放| 免费不卡在线视频| 国产揄拍国内精品对白| 国产高清精品在线| 色噜噜夜夜夜综合网| 色8久久人人97超碰香蕉987| 欧美在线影院一区二区| 欧美人妖巨大在线| 日韩视频在线观看一区二区| 国产亚洲欧洲一区高清在线观看| 久久精品一区二区三区不卡牛牛| 国产日产欧美精品一区二区三区| 亚洲欧美在线高清| 亚洲妇女屁股眼交7| 美女在线一区二区| 成人午夜在线视频| 欧美日韩高清一区二区不卡| 日韩欧美亚洲国产另类| 国产精品麻豆久久久| 亚洲一区免费观看| 精品影院一区二区久久久| 成人黄页毛片网站| 欧美一区二区三区视频免费播放 | 国产色产综合产在线视频| 日本一区二区三级电影在线观看| 一区视频在线播放| 美腿丝袜在线亚洲一区| 成人开心网精品视频| 欧美午夜电影网| 中文字幕av在线一区二区三区| 亚洲少妇中出一区| 九九九精品视频| 91啪九色porn原创视频在线观看| 日韩视频123| 亚洲一区二区在线播放相泽| 高清shemale亚洲人妖| 在线播放中文字幕一区| 亚洲天堂2016| 国产精品自拍av| 欧美一区二区精美| 亚洲一级二级三级在线免费观看| 国产99一区视频免费| 91精品婷婷国产综合久久竹菊| 欧美一区二区三区小说| 成人激情动漫在线观看| 日韩西西人体444www| 久久精品一区八戒影视| 日本午夜一本久久久综合| 欧美一级高清片| 中文字幕 久热精品 视频在线| 亚洲激情男女视频| 国产91精品免费| 日韩欧美一级片| 亚洲精品免费播放| 99久久久久久| 国产欧美综合在线观看第十页| 日韩av电影免费观看高清完整版 | 国产一区视频导航| 欧美私人免费视频| 亚洲色图欧美在线| 日本久久电影网| 91首页免费视频| 日韩一级黄色大片| 日日夜夜免费精品视频| 色av成人天堂桃色av| 亚洲天天做日日做天天谢日日欢 | 国产69精品久久99不卡| 精品国产一区二区三区忘忧草| 视频一区在线播放| 欧美麻豆精品久久久久久| 亚洲国产日韩综合久久精品| 欧美性一级生活| 亚洲不卡一区二区三区| 欧美日韩精品一区二区天天拍小说 | 粉嫩一区二区三区在线看| 久久久精品国产免大香伊| 国产精品资源在线看| 国产精品福利一区二区三区| 91亚洲精品一区二区乱码| 樱花影视一区二区| 91精品国产一区二区| 国产精品一区二区x88av| 中文字幕乱码日本亚洲一区二区| 99久久国产综合精品色伊 | 亚洲国产成人一区二区三区| 成人h精品动漫一区二区三区| 国产精品亲子伦对白| 99久久精品国产一区| 亚洲国产另类av| 精品成a人在线观看| 国产91在线|亚洲| 亚洲欧美国产毛片在线| 在线成人av影院| 国产成人在线视频免费播放| 亚洲人吸女人奶水| 欧美老女人在线| 国产精品一线二线三线精华| 亚洲视频一区在线观看| 欧美老年两性高潮| 成人午夜视频在线| 奇米777欧美一区二区| 国产精品丝袜91| 欧美一区二区不卡视频| 99久久99久久久精品齐齐| 丝袜美腿成人在线| 成人免费一区二区三区视频| 91精品国产综合久久精品图片| 国产精品12区| 首页综合国产亚洲丝袜| 最新久久zyz资源站| 欧美不卡在线视频| 在线免费观看日韩欧美| 国产精品99久久久久久似苏梦涵| 亚洲香蕉伊在人在线观| 欧美激情在线观看视频免费| 欧美日韩激情在线| 91丝袜美腿高跟国产极品老师| 久久成人羞羞网站| 丝袜诱惑亚洲看片| 一区二区三区欧美| 国产精品久久久久久久久快鸭 | 日韩欧美另类在线| 欧美在线观看你懂的| 成人免费av资源| 黄色日韩三级电影| 视频一区视频二区在线观看| 日韩理论在线观看| 国产情人综合久久777777| 精品国产自在久精品国产| 欧美日韩午夜在线| 在线观看日韩毛片| 91免费观看视频| 99久久精品免费| 极品少妇xxxx精品少妇偷拍| 99久久精品国产一区| 成人国产精品免费观看动漫|