AIGC動態歡迎閱讀
內容摘要:
來源:專知
近年來,基礎語言模型(LMs)在自然語言處理(NLP)和計算機視覺(CV)領域取得了顯著成就。與傳統神經網絡模型不同,基礎語言模型通過在大量無監督數據集上進行預訓練,獲得了豐富的常識知識,并且具有強大的遷移學習能力。然而,由于災難性遺忘,基礎語言模型仍然無法模擬人類的持續學習能力。因此,各種基于持續學習(CL)的方法被開發出來,以改進語言模型,使其能夠在適應新任務的同時不遺忘以前的知識。然而,現有方法的系統分類和性能比較仍然缺乏,這正是本綜述旨在填補的空白。我們深入綜述、總結并分類了現有文獻中應用于基礎語言模型的持續學習方法,如預訓練語言模型(PLMs)、大語言模型(LLMs)和視覺-語言模型(VLMs)。我們將這些研究分為離線持續學習和在線持續學習,其中包括傳統方法、基于參數高效的方法、基于提示調優的方法和持續預訓練方法。離線持續學習包括領域增量學習、任務增量學習和類別增量學習,而在線持續學習則細分為硬任務邊界和模糊任務邊界設置。此外,我們概述了持續學習研究中使用的典型數據集和指標,并詳細分析了基于語言模型的持續學習所面臨的挑戰和未來工作。
1 引言
近年來,基礎語言模型
原文鏈接:大模型在持續學習中的最新進展:綜述
聯系作者
文章來源:人工智能學家
作者微信:AItists
作者簡介:致力成為權威的人工智能科技媒體和前沿科技研究機構
? 版權聲明
文章版權歸作者所有,未經允許請勿轉載。
相關文章
暫無評論...