国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片

萬字長文解讀Scaling Law的一切,洞見LLM的未來

AIGC動態(tài)9個月前發(fā)布 機器之心
476 0 0

LLM 還將繼續(xù) scaling,但可能會是一種范式

萬字長文解讀Scaling Law的一切,洞見LLM的未來

原標題:萬字長文解讀Scaling Law的一切,洞見LLM的未來
文章來源:機器之心
內(nèi)容字數(shù):35098字

LLM Scaling Laws: Hitting a Wall?

This article explores the current state of Large Language Model (LLM) scaling,a cornerstone of recent AI advancements. While scaling—training larger models on more data—has driven progress,questions arise about its future viability. The article delves into scaling laws,their practical applications,and the factors potentially hindering further scaling.

1. Understanding Scaling Laws

LLM scaling laws describe the relationship between a model’s performance (e.g.,test loss) and factors like model size,dataset size,and training compute. This relationship often follows a power law,meaning a change in one factor leads to a predictable,relative change in performance. Early research demonstrated consistent performance improvements with increased scale across several orders of magnitude. However,this improvement is not exponential; it’s more akin to exponential decay,making further gains increasingly challenging.

2. The Pre-Training Era and GPT Models

The GPT series exemplifies scaling’s impact. From GPT’s 117M parameters to GPT-3’s 175B,scaling consistently improved performance. GPT-3’s success,achieved through in-context learning (few-shot learning),highlighted the potential of massive pre-training. Subsequent models like InstructGPT and GPT-4 incorporated further techniques beyond scaling,like reinforcement learning from human feedback (RLHF),to enhance model quality and alignment.

3. Chinchilla and Compute-Optimal Scaling

Research on Chinchilla challenged the initial scaling laws,emphasizing the importance of balancing model size and dataset size. Chinchilla,a 70B parameter model trained on a significantly larger dataset than previous models,demonstrated superior performance despite being smaller. This highlighted the potential for “compute-optimal” scaling,where both model and data size are scaled proportionally.

4. The Slowdown and its Interpretations

Recent reports suggest a slowdown in LLM improvements. This slowdown is complex and multifaceted. While technically scaling might still work,the rate of user-perceived progress is slowing. This is partly due to the inherent nature of scaling laws,which naturally flatten over time. The challenge is defining “improvement”—lower test loss doesn’t automatically translate to better performance on all tasks or user expectations.

5. Data Limitations and Future Directions

A significant obstacle is the potential “data death”—the scarcity of new,high-quality data sources for pre-training. This has led to explorations of alternative approaches: synthetic data generation,improved data curation techniques (like curriculum learning and continued pre-training),and refining scaling laws to focus on more meaningful downstream performance metrics.

6. Beyond Pre-training: Reasoning Models and LLM Systems

The limitations of solely relying on pre-training have pushed research towards enhancing LLM reasoning capabilities and building more complex LLM systems. Techniques like chain-of-thought prompting and models like OpenAI‘s o1 and o3 demonstrate significant progress in complex reasoning tasks. These models highlight a new scaling paradigm—scaling the compute dedicated to reasoning during both training and inference,yielding impressive results.

7. Conclusion: Scaling Continues,but in New Ways

While scaling pre-training might face limitations,the fundamental concept of scaling remains crucial. The focus is shifting towards scaling different aspects of LLM development: constructing robust LLM systems,improving reasoning abilities,and exploring new scaling paradigms beyond simply increasing model and data size during pre-training. The question isn’t *if* scaling will continue,but rather *what* we will scale next.


聯(lián)系作者

文章來源:機器之心
作者微信:
作者簡介:專業(yè)的人工智能媒體和產(chǎn)業(yè)服務(wù)平臺

閱讀原文
? 版權(quán)聲明
蟬鏡AI數(shù)字人

相關(guān)文章

蟬鏡AI數(shù)字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        一区二区三区蜜桃| 国产精品亚洲午夜一区二区三区 | 国产精品久久久久久亚洲毛片 | 国产jizzjizz一区二区| 91玉足脚交白嫩脚丫在线播放| 日韩一二三区视频| 亚洲一区二区欧美激情| 国产成人精品1024| 国产精品少妇自拍| 99精品国产99久久久久久白柏| 国产91在线|亚洲| 中国av一区二区三区| 国产激情偷乱视频一区二区三区| 丝袜美腿亚洲综合| 91精品国产麻豆国产自产在线| 国产盗摄一区二区| 亚洲欧美在线视频| 99re成人在线| 狠狠色综合播放一区二区| 中文成人综合网| 欧美夫妻性生活| 粉嫩一区二区三区在线看| 亚洲人亚洲人成电影网站色| av在线播放成人| 国产麻豆视频精品| 性做久久久久久久免费看| 久久嫩草精品久久久精品| 色爱区综合激月婷婷| 国产精品一区二区免费不卡| 视频一区二区不卡| 亚洲最大色网站| 樱桃视频在线观看一区| 国产精品天美传媒| 久久久久久久网| av成人免费在线观看| 亚洲婷婷综合色高清在线| 国产一区二区三区最好精华液| 国产在线精品一区在线观看麻豆| 久久精品国产99| 亚洲综合色丁香婷婷六月图片| 亚洲综合激情另类小说区| 一本大道久久a久久精二百| 免费在线看成人av| 狠狠色丁香久久婷婷综合_中 | 国产精品美女久久久久aⅴ| 日本成人中文字幕在线视频| 中文久久乱码一区二区| 国产精品国产三级国产普通话99 | 欧美精品日韩一本| 亚洲成a天堂v人片| 亚洲一本大道在线| 三级不卡在线观看| 天涯成人国产亚洲精品一区av| 亚洲婷婷综合久久一本伊一区| 欧美亚洲综合一区| 国产乱码字幕精品高清av| 午夜精彩视频在线观看不卡| 日韩电影一区二区三区| 日本成人在线不卡视频| 日韩电影在线一区二区三区| 亚洲日本丝袜连裤袜办公室| 亚洲午夜精品久久久久久久久| 国产一区二区久久| 欧亚洲嫩模精品一区三区| 欧美日韩免费在线视频| 欧美sm极限捆绑bd| 国产视频亚洲色图| 日本不卡视频在线观看| 欧美亚洲国产一卡| 精品国产乱码久久久久久图片| 国产午夜精品理论片a级大结局| 日韩福利视频网| 99精品国产视频| 国产日本欧洲亚洲| 日韩成人一区二区三区在线观看| 成人伦理片在线| 91精品国产综合久久精品app| 中文字幕一区不卡| 亚洲少妇30p| 国产一区日韩二区欧美三区| 欧美影院精品一区| 亚洲国产另类精品专区| 色综合天天天天做夜夜夜夜做| 亚洲免费观看高清完整版在线观看熊 | 91老师片黄在线观看| 精品国产电影一区二区| 午夜久久久久久久久| 色久综合一二码| 日韩一级完整毛片| 肉丝袜脚交视频一区二区| 欧美自拍丝袜亚洲| 亚洲精品免费视频| 欧美日韩高清在线播放| 亚洲永久精品国产| 色综合久久久久| 亚洲一区二区三区四区五区黄| 欧美日本一区二区三区| 中文字幕一区二区在线播放| 成人深夜福利app| 亚洲欧美在线视频观看| 91女厕偷拍女厕偷拍高清| 欧美国产一区视频在线观看| 一本色道久久综合亚洲91| 国产精品国模大尺度视频| 欧美三级三级三级| 国产在线观看免费一区| 亚洲日韩欧美一区二区在线| 久久久不卡网国产精品一区| 91视频com| 国产一区二区三区四| 久久精品亚洲国产奇米99| jlzzjlzz亚洲女人18| 麻豆成人av在线| 亚洲国产精品综合小说图片区| 国产传媒欧美日韩成人| 国产日韩影视精品| 久久久久久久久久久99999| 色视频欧美一区二区三区| 国产麻豆欧美日韩一区| 日韩中文字幕一区二区三区| 亚洲成人午夜影院| 五月综合激情婷婷六月色窝| 亚洲国产人成综合网站| 亚洲成人一区在线| 亚洲国产精品麻豆| 视频一区视频二区中文| 日韩电影免费在线| 国产一区二区三区电影在线观看| 欧美精品一级二级三级| 欧美人与z0zoxxxx视频| 日韩一区二区三区视频在线观看| 亚洲欧美日韩一区二区 | 91麻豆精品国产综合久久久久久| 日韩精品自拍偷拍| 日韩欧美在线网站| 欧美一级夜夜爽| 久久久夜色精品亚洲| 国产欧美一区二区三区鸳鸯浴| 免费观看91视频大全| 成人综合激情网| 欧美成人高清电影在线| 一区在线观看免费| 精品中文字幕一区二区| 高清视频一区二区| 欧美性色综合网| 亚洲人成亚洲人成在线观看图片| 欧美日韩一级黄| 亚洲人成在线播放网站岛国| caoporen国产精品视频| 欧美mv和日韩mv的网站| 午夜日韩在线电影| 欧美在线免费播放| 国产精品高潮久久久久无| 国产一区在线不卡| 日韩免费高清视频| 天天操天天色综合| 欧美亚洲综合在线| 亚洲国产成人porn| 91精品在线一区二区| 久久精品久久精品| 久久久久久久综合| 不卡的av电影| 免费成人在线播放| 欧美精品一区男女天堂| 精品一区二区日韩| 国产区在线观看成人精品| 99精品欧美一区二区三区小说 | 91浏览器入口在线观看| 国产精品视频观看| 欧美日韩一级大片网址| 午夜欧美2019年伦理| 精品日韩在线观看| 91蝌蚪porny九色| 亚洲mv在线观看| 欧美精品色综合| 国产91精品精华液一区二区三区 | 在线播放一区二区三区| 亚洲成人激情社区| 欧美精品一区二| 欧美图片一区二区三区| 男男视频亚洲欧美| 国产精品高清亚洲| 欧美激情一区三区| 欧美乱熟臀69xxxxxx| 国产suv精品一区二区三区| 日韩国产精品久久久久久亚洲| 国产精品一区一区三区| 最好看的中文字幕久久| 欧美日韩一本到| www.日韩精品| 高清国产午夜精品久久久久久| 欧美亚洲国产bt| 久久国产日韩欧美精品| 亚洲成人激情av| 中文字幕制服丝袜一区二区三区| 亚洲色图欧美在线| 欧美一区二区三区播放老司机| 亚洲与欧洲av电影| 欧美激情一区在线观看| 亚洲欧美一区二区久久|