国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片

DeepSeek發布NSA:超快速長上下文訓練與推理的新突破

DeepSeek發布NSA:超快速長上下文訓練與推理的新突破

原標題:DeepSeek發布NSA:超快速長上下文訓練與推理的新突破
文章來源:小夏聊AIGC
內容字數:3860字

DeepSeek’s NSA: A Breakthrough in Accelerating AI Model Training and Inference

The field of artificial intelligence is constantly evolving,with a major focus on improving the speed and efficiency of large language models. DeepSeek,an AI company,has recently unveiled a significant advancement with its novel sparse attention mechanism,NSA (Native Sparse Attention). This innovative technology promises to revolutionize how we train and utilize AI models,particularly those dealing with long-context tasks.

Addressing the Bottleneck of Long-Context Processing

One of the biggest challenges in natural language processing is handling long sequences of text. Traditional attention mechanisms,while effective,become computationally expensive when dealing with lengthy contexts,often exceeding 64k tokens. This computational burden significantly slows down both training and inference,creating a bottleneck for the development of more powerful AI models. Existing sparse attention methods,while aiming to alleviate this issue,often fall short,lacking effectiveness in both training and inference phases,or suffering from compatibility issues with modern hardware.

NSA: A Multi-pronged Approach to Efficiency

DeepSeek’s NSA tackles these limitations head-on. Its core innovation lies in a three-component system: a dynamic hierarchical sparsity strategy,coarse-grained token compression,and fine-grained token selection. This integrated approach allows NSA to maintain both global context awareness and local precision,striking a crucial balance between efficiency and accuracy.

The architecture comprises three parallel attention branches: compressed attention,selective attention,and sliding window attention. Compressed attention captures coarse-grained semantic information by aggregating keys and values into block-level representations. Selective attention refines this by prioritizing important fine-grained information,assigning importance scores to blocks and selectively processing the highest-ranking ones. Finally,sliding window attention focuses on local contexts,preventing over-reliance on local patterns.

Hardware Optimization for Maximum Performance

NSA isn’t just a software solution; it’s designed with hardware in mind. DeepSeek leveraged Triton to create hardware-aligned sparse attention kernels,focusing on architectures that share KV caches,such as GQA and MQA. Optimizations include group-centric data loading,shared KV loading,and grid loop scheduling,resulting in near-optimal computational intensity balance.

Impressive Results Across Benchmarks

DeepSeek’s experiments using a 27B parameter model (with 3B active parameters) incorporating GQA and MoE demonstrated NSA’s superior performance. Across various benchmarks,the NSA-enhanced model outperformed all baselines,including the full-attention model,achieving top performance in seven out of nine metrics. In long-context tasks,NSA showed exceptionally high retrieval accuracy in “needle-in-a-haystack” tests with 64k contexts. On LongBench,it excelled in multi-hop QA and code understanding tasks. Furthermore,combining NSA with inference models through knowledge distillation and supervised fine-tuning enabled chain-of-thought reasoning in 32k-length mathematical reasoning tasks. In the AIME 24 benchmark,the sparse attention variant (NSA-R) significantly outperformed the full attention-R counterpart at both 8k and 16k context settings.

The speed improvements were remarkable. On an 8-GPU A100 system,NSA achieved up to 9x faster forward propagation and 6x faster backward propagation with 64k contexts. Decoding speed improved dramatically,reaching an astounding 11.6x speedup at 64k context length.

Conclusion and Future Directions

DeepSeek’s NSA represents a significant contribution to the open-source AI community,offering a promising path towards accelerating long-context modeling and its applications. While the results are impressive,the team acknowledges the potential for further optimization,particularly in refining the learning process of the sparse attention patterns and exploring more efficient hardware implementations. This breakthrough underscores the ongoing drive to make AI models faster,more efficient,and more accessible,paving the way for even more powerful and versatile AI systems in the future.


聯系作者

文章來源:小夏聊AIGC
作者微信:
作者簡介:專注于人工智能生成內容的前沿信息與技術分享。我們提供AI生成藝術、文本、音樂、視頻等領域的最新動態與應用案例。每日新聞速遞、技術解讀、行業分析、專家觀點和創意展示。期待與您一起探索AI的無限潛力。歡迎關注并分享您的AI作品或寶貴意見。

閱讀原文
? 版權聲明
蟬鏡AI數字人

相關文章

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        欧美四级电影网| 日韩av电影天堂| 亚洲影院免费观看| 色香蕉久久蜜桃| 亚洲成人激情av| 欧美一区在线视频| 国模大尺度一区二区三区| 久久久久久久久伊人| aaa亚洲精品| 亚洲成av人片在www色猫咪| 欧美一级专区免费大片| 国产精品123区| 一区二区在线观看免费| 欧美一区二区三区免费大片| 国产成人在线视频网站| 一区二区三区在线观看欧美| 欧美一a一片一级一片| 久久久国产综合精品女国产盗摄| 粉嫩一区二区三区在线看| 亚洲精品成人a在线观看| 日韩情涩欧美日韩视频| 99久久99久久精品免费看蜜桃| 亚洲一区在线看| 精品国产一区二区精华| 91麻豆蜜桃一区二区三区| 丝瓜av网站精品一区二区| 久久夜色精品国产噜噜av| 欧美亚洲一区二区三区四区| 国内成人免费视频| 亚洲韩国精品一区| 国产精品美女久久久久久| 欧美一区二区二区| 91麻豆精品一区二区三区| 国产麻豆午夜三级精品| 日本美女一区二区三区| 国产婷婷色一区二区三区四区 | 一卡二卡三卡日韩欧美| 精品福利av导航| 日本久久精品电影| 国产高清视频一区| 日本视频免费一区| 亚洲视频中文字幕| 中文字幕的久久| 欧美一级二级三级乱码| 中文字幕永久在线不卡| 国产精品一二三四五| 亚洲免费在线观看视频| 欧美精品一区二区三区在线播放| 日本韩国视频一区二区| 国产91综合网| 全国精品久久少妇| 亚洲综合色自拍一区| 国产精品成人免费在线| 久久毛片高清国产| 538在线一区二区精品国产| 欧美中文字幕不卡| 一本色道久久综合精品竹菊| 国产91综合网| 成人国产精品免费观看视频| 成人性生交大片免费看中文| 国产精品亚洲人在线观看| 国内精品免费**视频| 国产一区二区三区免费在线观看| 免费的成人av| 免费观看30秒视频久久| 免费精品视频最新在线| 91蜜桃婷婷狠狠久久综合9色| 亚洲欧美一区二区三区孕妇| 国产亚洲美州欧州综合国| 精品精品国产高清a毛片牛牛| 欧美一级夜夜爽| 精品少妇一区二区| 91精品国产欧美一区二区18| 欧美一区二区三区免费视频| 日韩欧美国产一区二区三区| 久久久噜噜噜久久中文字幕色伊伊 | 色哟哟亚洲精品| 欧美亚洲综合久久| 欧美精品久久天天躁| 国产精品一区二区在线观看不卡| 韩国av一区二区三区在线观看| 精品一二三四在线| 成人免费视频caoporn| 99久久婷婷国产| 91国偷自产一区二区使用方法| 欧美色国产精品| 精品国一区二区三区| 国产精品欧美久久久久无广告| 亚洲精品视频一区| 裸体一区二区三区| 处破女av一区二区| 欧美日韩精品一区视频| 国产免费久久精品| 亚洲国产另类av| 国产在线视频一区二区三区| 99免费精品视频| 91.成人天堂一区| 国产蜜臀97一区二区三区| 亚洲va韩国va欧美va精品| 国产乱码一区二区三区| 欧美日韩免费电影| 国产精品三级av在线播放| 秋霞av亚洲一区二区三| 99久久精品国产毛片| 日韩欧美不卡在线观看视频| 一区二区激情视频| 国产成人高清在线| 日韩你懂的在线观看| 亚洲精品国产精品乱码不99| 国产福利一区在线观看| 欧美日韩大陆在线| 一区二区三区精密机械公司| 国产成人综合精品三级| 日韩三级.com| 婷婷开心激情综合| 色综合亚洲欧洲| 欧美激情中文字幕| 国产综合成人久久大片91| 91精品国产综合久久香蕉麻豆| 亚洲精品乱码久久久久久黑人 | 青青草视频一区| 99精品热视频| 欧美激情一区在线观看| 捆绑变态av一区二区三区| 欧美日韩国产小视频在线观看| 最近中文字幕一区二区三区| 国产麻豆精品在线| 精品国产乱码久久| 久草中文综合在线| 日韩欧美一区二区在线视频| 久久久久久久久蜜桃| 久久精品噜噜噜成人av农村| 欧美一区二区三级| 日韩成人午夜精品| 欧美精品一卡两卡| 日韩和欧美一区二区三区| 欧美三级在线视频| 爽好久久久欧美精品| 51精品久久久久久久蜜臀| 偷拍与自拍一区| 欧美一区永久视频免费观看| 日本亚洲最大的色成网站www| 日韩欧美亚洲一区二区| 国产一区二区调教| 亚洲国产高清aⅴ视频| www.欧美色图| 亚洲成av人片一区二区三区| 欧美激情综合五月色丁香 | 欧美久久婷婷综合色| 免费在线观看一区二区三区| 精品噜噜噜噜久久久久久久久试看| 激情综合网最新| 亚洲色图清纯唯美| 欧美高清dvd| 国产成人精品三级| 亚洲毛片av在线| 欧美一二三区在线| 丁香婷婷综合网| 亚洲男同性恋视频| 欧美一区二区三区四区高清| 国产一区二区视频在线| 自拍偷自拍亚洲精品播放| 欧美另类变人与禽xxxxx| 久草精品在线观看| 一级精品视频在线观看宜春院| 7878成人国产在线观看| 国产呦精品一区二区三区网站| 成人免费在线播放视频| 777亚洲妇女| 99精品国产99久久久久久白柏| 午夜激情久久久| 中文字幕中文字幕中文字幕亚洲无线| 欧美在线观看视频一区二区 | 国产精品影视天天线| 亚洲免费av观看| 国产午夜久久久久| 欧美日韩亚洲综合| 精品福利一二区| 欧美午夜宅男影院| 国产成人亚洲综合色影视| 亚洲激情网站免费观看| 久久久欧美精品sm网站| 久久久精品国产免费观看同学| 日精品一区二区| 国产拍欧美日韩视频二区| 色婷婷国产精品久久包臀| 老鸭窝一区二区久久精品| 国产精品美女久久久久久2018| 欧美日韩国产天堂| av影院午夜一区| 精品一区二区综合| 亚洲国产成人va在线观看天堂| 中文乱码免费一区二区| 日韩欧美一区二区久久婷婷| 91色婷婷久久久久合中文| 成人午夜在线视频| 国产高清久久久久| 久久精品久久精品| 日韩va欧美va亚洲va久久| 亚洲午夜精品17c|