国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片

DeepSeek發布NSA:超快速長上下文訓練與推理的新突破

DeepSeek發布NSA:超快速長上下文訓練與推理的新突破

原標題:DeepSeek發布NSA:超快速長上下文訓練與推理的新突破
文章來源:小夏聊AIGC
內容字數:3860字

DeepSeek’s NSA: A Breakthrough in Accelerating AI Model Training and Inference

The field of artificial intelligence is constantly evolving,with a major focus on improving the speed and efficiency of large language models. DeepSeek,an AI company,has recently unveiled a significant advancement with its novel sparse attention mechanism,NSA (Native Sparse Attention). This innovative technology promises to revolutionize how we train and utilize AI models,particularly those dealing with long-context tasks.

Addressing the Bottleneck of Long-Context Processing

One of the biggest challenges in natural language processing is handling long sequences of text. Traditional attention mechanisms,while effective,become computationally expensive when dealing with lengthy contexts,often exceeding 64k tokens. This computational burden significantly slows down both training and inference,creating a bottleneck for the development of more powerful AI models. Existing sparse attention methods,while aiming to alleviate this issue,often fall short,lacking effectiveness in both training and inference phases,or suffering from compatibility issues with modern hardware.

NSA: A Multi-pronged Approach to Efficiency

DeepSeek’s NSA tackles these limitations head-on. Its core innovation lies in a three-component system: a dynamic hierarchical sparsity strategy,coarse-grained token compression,and fine-grained token selection. This integrated approach allows NSA to maintain both global context awareness and local precision,striking a crucial balance between efficiency and accuracy.

The architecture comprises three parallel attention branches: compressed attention,selective attention,and sliding window attention. Compressed attention captures coarse-grained semantic information by aggregating keys and values into block-level representations. Selective attention refines this by prioritizing important fine-grained information,assigning importance scores to blocks and selectively processing the highest-ranking ones. Finally,sliding window attention focuses on local contexts,preventing over-reliance on local patterns.

Hardware Optimization for Maximum Performance

NSA isn’t just a software solution; it’s designed with hardware in mind. DeepSeek leveraged Triton to create hardware-aligned sparse attention kernels,focusing on architectures that share KV caches,such as GQA and MQA. Optimizations include group-centric data loading,shared KV loading,and grid loop scheduling,resulting in near-optimal computational intensity balance.

Impressive Results Across Benchmarks

DeepSeek’s experiments using a 27B parameter model (with 3B active parameters) incorporating GQA and MoE demonstrated NSA’s superior performance. Across various benchmarks,the NSA-enhanced model outperformed all baselines,including the full-attention model,achieving top performance in seven out of nine metrics. In long-context tasks,NSA showed exceptionally high retrieval accuracy in “needle-in-a-haystack” tests with 64k contexts. On LongBench,it excelled in multi-hop QA and code understanding tasks. Furthermore,combining NSA with inference models through knowledge distillation and supervised fine-tuning enabled chain-of-thought reasoning in 32k-length mathematical reasoning tasks. In the AIME 24 benchmark,the sparse attention variant (NSA-R) significantly outperformed the full attention-R counterpart at both 8k and 16k context settings.

The speed improvements were remarkable. On an 8-GPU A100 system,NSA achieved up to 9x faster forward propagation and 6x faster backward propagation with 64k contexts. Decoding speed improved dramatically,reaching an astounding 11.6x speedup at 64k context length.

Conclusion and Future Directions

DeepSeek’s NSA represents a significant contribution to the open-source AI community,offering a promising path towards accelerating long-context modeling and its applications. While the results are impressive,the team acknowledges the potential for further optimization,particularly in refining the learning process of the sparse attention patterns and exploring more efficient hardware implementations. This breakthrough underscores the ongoing drive to make AI models faster,more efficient,and more accessible,paving the way for even more powerful and versatile AI systems in the future.


聯系作者

文章來源:小夏聊AIGC
作者微信:
作者簡介:專注于人工智能生成內容的前沿信息與技術分享。我們提供AI生成藝術、文本、音樂、視頻等領域的最新動態與應用案例。每日新聞速遞、技術解讀、行業分析、專家觀點和創意展示。期待與您一起探索AI的無限潛力。歡迎關注并分享您的AI作品或寶貴意見。

閱讀原文
? 版權聲明
蟬鏡AI數字人

相關文章

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        91精品国产综合久久久蜜臀粉嫩| 蜜桃久久av一区| 亚洲国产色一区| 91国产丝袜在线播放| 亚洲精品成a人| 欧美电影影音先锋| 麻豆精品在线播放| 国产精品第13页| 欧美性猛片aaaaaaa做受| 日韩av在线免费观看不卡| 91精品国产综合久久久久久 | 91欧美激情一区二区三区成人| 国产欧美精品区一区二区三区| 波多野结衣中文字幕一区二区三区| 中文字幕一区二区三区乱码在线| 在线免费观看视频一区| 日本不卡免费在线视频| 国产亚洲一区二区三区| 在线精品视频小说1| 六月丁香综合在线视频| 一区视频在线播放| 91精品欧美综合在线观看最新| 久久成人18免费观看| 中文字幕日韩欧美一区二区三区| 日本道免费精品一区二区三区| 日韩影院免费视频| 国产精品乱码久久久久久 | 国产成人在线视频网站| 亚洲综合视频网| 中文字幕av不卡| 51精品久久久久久久蜜臀| eeuss影院一区二区三区| 极品少妇一区二区三区精品视频 | 久久先锋影音av鲁色资源网| 99精品视频一区| 韩国女主播一区| 亚洲电影激情视频网站| 综合欧美亚洲日本| 久久久久久久网| 日韩一级在线观看| 欧美视频你懂的| 成人成人成人在线视频| 狠狠色丁香久久婷婷综合_中| 亚洲国产视频一区二区| 综合在线观看色| 中文字幕在线不卡一区| 中文乱码免费一区二区| 欧美mv日韩mv国产网站| 69久久99精品久久久久婷婷| 色呦呦日韩精品| 91激情在线视频| 欧洲av一区二区嗯嗯嗯啊| 91美女在线观看| 色成年激情久久综合| 91看片淫黄大片一级在线观看| 成人免费三级在线| a在线欧美一区| 99久久久精品免费观看国产蜜| 国内精品在线播放| 国产一区久久久| 国产精品一色哟哟哟| 国产一区二区三区免费在线观看| 日本不卡123| 亚洲福利一区二区| 日本中文字幕一区二区视频| 亚洲韩国精品一区| 日本一不卡视频| 蜜臀av性久久久久蜜臀av麻豆| 日本特黄久久久高潮| 天堂va蜜桃一区二区三区| 亚洲伊人伊色伊影伊综合网| 亚洲美女屁股眼交| 日韩中文字幕不卡| 蜜桃av一区二区三区电影| 日本欧美韩国一区三区| 免费成人av资源网| 国产一区二区三区在线观看免费视频| 国产一区不卡精品| 99久久精品国产导航| 99久久免费精品| 欧美午夜一区二区三区| 91精品久久久久久久91蜜桃| 精品久久久久久无| 中文字幕在线观看一区| 午夜精品久久久久久不卡8050| 麻豆精品新av中文字幕| 国产精品亚洲午夜一区二区三区| av中文字幕亚洲| 欧美精品一级二级| 国产欧美日韩久久| 午夜精品久久久久久久蜜桃app| 精品一区二区三区不卡| 成人av第一页| 欧美一级一级性生活免费录像| 国产区在线观看成人精品| 亚洲一级二级在线| 国产福利一区二区三区在线视频| 91在线无精精品入口| 日韩午夜在线观看视频| 欧美激情自拍偷拍| 日韩精品一二区| aaa亚洲精品| 日韩免费高清视频| 亚洲欧洲精品成人久久奇米网| 日韩av中文字幕一区二区| 91视频在线观看免费| 日韩欧美黄色影院| 亚洲国产一区二区视频| 国产高清久久久久| 精品剧情v国产在线观看在线| 亚洲精品日日夜夜| 高清久久久久久| 精品日韩欧美在线| 婷婷综合久久一区二区三区| 99久精品国产| 中文字幕不卡在线观看| 国产一区二区三区免费观看| 欧美日韩mp4| 亚洲国产成人高清精品| 色婷婷综合久久久中文字幕| 久久人人爽人人爽| 美国毛片一区二区三区| 欧美肥大bbwbbw高潮| 洋洋av久久久久久久一区| 成人av在线影院| 中文字幕av一区二区三区免费看| 久久se这里有精品| 91精品国产欧美一区二区成人| 亚洲 欧美综合在线网络| 99国产欧美另类久久久精品| 国产三级精品在线| 国产盗摄一区二区| 欧美国产日产图区| 国产69精品久久99不卡| 久久夜色精品一区| 国产一区二区导航在线播放| 久久久久亚洲蜜桃| 国产91对白在线观看九色| 日本一区二区高清| 成人午夜看片网址| 国产精品传媒视频| 91麻豆免费看片| 亚洲一二三四在线| 欧美军同video69gay| 日韩中文字幕1| 91麻豆精品国产91久久久资源速度| 亚洲最大色网站| 欧美性猛交xxxx黑人交| 图片区日韩欧美亚洲| 欧美zozo另类异族| 丁香另类激情小说| 亚洲精品成人悠悠色影视| 欧美精品18+| 国产91对白在线观看九色| 亚洲免费成人av| 欧美一区二区三区视频免费播放 | 亚洲区小说区图片区qvod| 91久久精品网| 免费成人在线视频观看| 中文字幕不卡三区| 欧美乱熟臀69xxxxxx| 国产麻豆一精品一av一免费| 一色屋精品亚洲香蕉网站| 欧美电影在哪看比较好| 高清视频一区二区| 天天综合日日夜夜精品| 久久精品视频在线看| 欧美网站大全在线观看| 国内精品国产成人国产三级粉色| 国产精品久久久久影院| 欧美日韩国产综合一区二区 | 久久狠狠亚洲综合| 中文字幕一区二区三区视频| 在线播放亚洲一区| 成人久久久精品乱码一区二区三区| 亚洲在线观看免费视频| 久久香蕉国产线看观看99| 欧美亚洲综合网| eeuss鲁片一区二区三区在线看| 日本vs亚洲vs韩国一区三区二区| 亚洲人午夜精品天堂一二香蕉| 欧美一区二区私人影院日本| k8久久久一区二区三区| 蜜臀av在线播放一区二区三区| 成人欧美一区二区三区小说| 欧美成人video| 欧美日韩日日夜夜| 日本高清不卡视频| 成人高清av在线| 国产精品一区二区免费不卡| 亚洲成人av中文| 亚洲欧美日韩在线不卡| 国产亚洲制服色| 日韩欧美国产不卡| 欧美一区二区三区视频在线 | 性做久久久久久免费观看| 国产日韩v精品一区二区| 精品少妇一区二区三区在线视频 | 91行情网站电视在线观看高清版| 丁香六月综合激情|