国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


Vision Transformer (base-sized model)

Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224×224. It was introduced in the paper An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him.
Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.


Model description

The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224×224 pixels.
Images are presented to the model as a sequence of fixed-size patches (resolution 16×16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
Note that this model does not provide any fine-tuned heads, as these were zero’d by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.


Intended uses & limitations

You can use the raw model for image classification. See the model hub to look for
fine-tuned versions on a task that interests you.


How to use

Here is how to use this model in PyTorch:
from transformers import ViTImageProcessor, ViTModel
from PIL import Image
import requests
url = 'https://res.m.futurefh.com/2023/05/20230526095402-647081ba87f76.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state

Here is how to use this model in JAX/Flax:
from transformers import ViTImageProcessor, FlaxViTModel
from PIL import Image
import requests
url = 'https://res.m.futurefh.com/2023/05/20230526095402-647081ba87f76.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
model = FlaxViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
inputs = processor(images=image, return_tensors="np")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state


Training data

The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.


Training procedure


Preprocessing

The exact details of preprocessing of images during training/validation can be found here.
Images are resized/rescaled to the same resolution (224×224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).


Pretraining

The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.


Evaluation results

For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384×384). Of course, increasing the model size will result in better performance.


BibTeX entry and citation info

@misc{wu2020visual,
title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision},
author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
year={2020},
eprint={2006.03677},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}

數據評估

google/vit-base-patch16-224-in21k瀏覽人數已經達到985,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:google/vit-base-patch16-224-in21k的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找google/vit-base-patch16-224-in21k的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于google/vit-base-patch16-224-in21k特別聲明

本站OpenI提供的google/vit-base-patch16-224-in21k都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午5:54收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        亚洲精品一区二区三区蜜桃下载 | 国产成人在线视频网址| 欧美日韩在线不卡| 亚洲综合色自拍一区| 欧美日韩亚洲综合一区| 日韩和的一区二区| 久久网站最新地址| 91麻豆swag| 视频在线观看一区| 久久久久久久久久久久久久久99| 成人av片在线观看| 亚洲国产综合91精品麻豆| 91麻豆精品国产91久久久久| 国产一区三区三区| 亚洲国产精品影院| 中文字幕精品三区| 日韩一区二区三免费高清| 9l国产精品久久久久麻豆| 欧美a一区二区| 亚洲丝袜自拍清纯另类| 精品久久一二三区| 欧美日韩一区二区三区不卡| 高清在线成人网| 日韩av一二三| 亚洲综合自拍偷拍| 国产日韩v精品一区二区| 欧美另类高清zo欧美| 成人av午夜影院| 看国产成人h片视频| 亚洲国产精品天堂| 亚洲女子a中天字幕| 日本一区二区三区四区| 日韩视频免费观看高清完整版 | 一区二区三区四区av| 精品免费日韩av| 欧美日本不卡视频| 在线视频欧美精品| 99精品一区二区| 国产大片一区二区| 久久99久久精品| 亚洲一区二区在线播放相泽| 中文无字幕一区二区三区| 久久亚洲影视婷婷| 欧美一三区三区四区免费在线看 | 国产精品每日更新在线播放网址| 91精品国产综合久久久久久| 色婷婷亚洲婷婷| 91香蕉视频污在线| 99re在线精品| 一本到不卡免费一区二区| 成人性生交大片免费看在线播放| 精品一区二区三区免费毛片爱| 日韩电影免费在线| 石原莉奈在线亚洲二区| 天天爽夜夜爽夜夜爽精品视频| 亚洲777理论| 亚洲成人免费电影| 日本在线不卡视频| 裸体歌舞表演一区二区| 国产一区二区日韩精品| 成熟亚洲日本毛茸茸凸凹| 国产成人自拍网| av电影在线不卡| 色婷婷综合久久久| 欧美精品一级二级| 日韩免费一区二区| 国产精品美女久久久久久久久 | 日韩欧美一卡二卡| 欧美精品一区二区不卡| 国产欧美一二三区| 亚洲免费大片在线观看| 亚洲永久精品国产| 美女视频网站黄色亚洲| 国产高清视频一区| 99久久免费精品| 777xxx欧美| 欧美经典一区二区| 亚洲综合av网| 美女一区二区视频| 国产69精品一区二区亚洲孕妇| av一二三不卡影片| 4438x成人网最大色成网站| 久久久久综合网| 亚洲欧美色综合| 美腿丝袜在线亚洲一区| 成人免费的视频| 欧美肥妇bbw| 国产午夜亚洲精品不卡 | 亚洲精选视频在线| 免费高清在线一区| 成人黄色小视频| 欧美日韩在线播| 国产日韩欧美制服另类| 香蕉av福利精品导航| 国产精品996| 欧美一区二区三区色| 国产精品成人免费精品自在线观看| 婷婷成人激情在线网| 国产ts人妖一区二区| 日韩欧美在线综合网| 亚洲午夜精品在线| 成人丝袜高跟foot| 久久蜜桃av一区二区天堂 | 国产日韩欧美麻豆| 丝袜诱惑亚洲看片| 一本在线高清不卡dvd| 久久久久九九视频| 美女任你摸久久| 欧美日韩极品在线观看一区| 国产精品第13页| 国产精品亚洲人在线观看| 欧美在线影院一区二区| 中文字幕亚洲成人| 国产一区二区三区免费看 | 日本久久电影网| 中文字幕国产一区| 国产成人超碰人人澡人人澡| 538在线一区二区精品国产| 亚洲午夜激情网页| 欧美在线一区二区| 日韩美女视频19| 成人午夜电影网站| 国产日本欧洲亚洲| 久久91精品国产91久久小草 | 亚洲精品成人少妇| 成人18视频日本| 国产欧美日韩三级| 国产精品一二三在| 久久久久久综合| 国产黄色成人av| 国产日韩精品一区二区浪潮av | 久久激情五月婷婷| 欧美一二三区在线观看| 看片的网站亚洲| 精品国产一区二区在线观看| 免费观看成人av| 26uuu精品一区二区在线观看| 国产精品资源网| 国产精品网曝门| 色综合久久六月婷婷中文字幕| 17c精品麻豆一区二区免费| 色国产综合视频| 日本亚洲视频在线| 久久五月婷婷丁香社区| 99久久99久久精品免费看蜜桃| 一区二区三区.www| 制服视频三区第一页精品| 久草热8精品视频在线观看| 久久综合狠狠综合久久激情| 成人丝袜高跟foot| 亚洲国产日韩综合久久精品| 欧美一区二区三区视频免费 | 精品国产精品网麻豆系列 | 色系网站成人免费| 日韩国产一二三区| 国产午夜久久久久| 色94色欧美sute亚洲13| 蜜桃一区二区三区在线| 国产精品久久久久久久浪潮网站 | 日韩欧美国产精品| 成人美女视频在线观看18| 一区二区免费看| 久久午夜羞羞影院免费观看| 色综合久久中文字幕| 激情欧美一区二区| 亚洲一区二区在线观看视频| 久久久久亚洲综合| 欧美日本在线看| 久久久精品人体av艺术| 精品盗摄一区二区三区| 韩国av一区二区三区四区| 欧美一区在线视频| 激情成人综合网| 欧美va亚洲va国产综合| 国产精品不卡一区| 一区二区三区在线视频免费| 久久久精品国产免大香伊| 欧美国产精品劲爆| 亚洲综合视频网| 国产精品午夜在线| 亚洲图片你懂的| 91视频在线观看免费| 91老司机福利 在线| 久久综合色婷婷| 色综合夜色一区| 日韩av午夜在线观看| 国产精品国产精品国产专区不片| 欧美色图12p| 国产91精品入口| 久久99精品国产麻豆婷婷| 亚洲成人资源在线| 中文字幕一区二区三区四区| 欧美成人乱码一区二区三区| 精品视频一区三区九区| 成人午夜碰碰视频| 国产精品一区二区在线观看网站| 午夜电影一区二区| 亚洲国产精品自拍| 亚洲午夜久久久久久久久电影网| 亚洲欧美偷拍三级|