国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


SpeechT5 (TTS task)

SpeechT5 model fine-tuned for speech synthesis (text-to-speech) on LibriTTS.
This model was introduced in SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
SpeechT5 was first released in this repository, original weights. The license used is MIT.


Model Description

Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder.
Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder.
Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.

  • Developed by: Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
  • Shared by [optional]: Matthijs Hollemans
  • Model type: text-to-speech
  • Language(s) (NLP): [More Information Needed]
  • License: MIT
  • Finetuned from model [optional]: [More Information Needed]


Model Sources [optional]

  • Repository: [https://github.com/microsoft/SpeechT5/]
  • Paper: [https://arxiv.org/pdf/2110.07205.pdf]
  • Blog Post: [https://huggingface.co/blog/speecht5]
  • Demo: [https://huggingface.co/spaces/Matthijs/speecht5-tts-demo]


Uses


Direct Use

You can use this model for speech synthesis. See the model hub to look for fine-tuned versions on a task that interests you.


Downstream Use [optional]

[More Information Needed]


Out-of-Scope Use

[More Information Needed]


Bias, Risks, and Limitations

[More Information Needed]


Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.


How to Get Started With the Model

Use the code below to convert text into a mono 16 kHz speech waveform.
# Following pip packages need to be installed:
# !pip install git+https://github.com/huggingface/transformers sentencepiece datasets
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import torch
import soundfile as sf
from datasets import load_dataset
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
# load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
sf.write("speech.wav", speech.numpy(), samplerate=16000)


Fine-tuning the Model

Refer to this Colab notebook for an example of how to fine-tune SpeechT5 for TTS on a different dataset or a new language.


Training Details


Training Data

LibriTTS


Training Procedure


Preprocessing [optional]

Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text.


Training hyperparameters

  • Precision: [More Information Needed]
  • Regime: [More Information Needed]


Speeds, Sizes, Times [optional]

[More Information Needed]


Evaluation


Testing Data, Factors & Metrics


Testing Data

[More Information Needed]


Factors

[More Information Needed]


Metrics

[More Information Needed]


Results

[More Information Needed]


Summary


Model Examination [optional]

Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.


Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]


Technical Specifications [optional]


Model Architecture and Objective

The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets.
After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder.


Compute Infrastructure

[More Information Needed]


Hardware

[More Information Needed]


Software

[More Information Needed]


Citation [optional]

BibTeX:
@inproceedings{ao-etal-2022-speecht5,
title = {{S}peech{T}5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing},
author = {Ao, Junyi and Wang, Rui and Zhou, Long and Wang, Chengyi and Ren, Shuo and Wu, Yu and Liu, Shujie and Ko, Tom and Li, Qing and Zhang, Yu and Wei, Zhihua and Qian, Yao and Li, Jinyu and Wei, Furu},
booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
month = {May},
year = {2022},
pages={5723--5738},
}


Glossary [optional]

  • text-to-speech to synthesize audio


More Information [optional]

[More Information Needed]


Model Card Authors [optional]

Disclaimer: The team releasing SpeechT5 did not write a model card for this model so this model card has been written by the Hugging Face team.


Model Card Contact

[More Information Needed]

數據評估

microsoft/speecht5_tts瀏覽人數已經達到433,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:microsoft/speecht5_tts的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找microsoft/speecht5_tts的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于microsoft/speecht5_tts特別聲明

本站OpenI提供的microsoft/speecht5_tts都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:12收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        亚洲同性gay激情无套| 972aa.com艺术欧美| 欧美www视频| 欧美韩国一区二区| 国产91精品欧美| 亚洲欧洲国产日韩| 麻豆精品久久久| 久久精品人人爽人人爽| 99精品视频在线观看免费| 亚洲精品免费看| 欧美一区二区二区| 国产麻豆精品在线| 日韩欧美黄色影院| 国产剧情一区二区| 精品奇米国产一区二区三区| 激情国产一区二区| 亚洲黄色性网站| 精品美女在线观看| 91精品办公室少妇高潮对白| 国产日韩一级二级三级| 色欧美片视频在线观看在线视频| 2021国产精品久久精品| 99久久精品国产一区| 偷拍一区二区三区| 亚洲人成在线播放网站岛国| 日韩欧美专区在线| 精品午夜久久福利影院| 亚洲美女屁股眼交3| 久久视频一区二区| 欧美精品丝袜中出| a4yy欧美一区二区三区| 亚洲欧美日韩国产一区二区三区 | 国产一区二区三区精品视频| 在线看国产一区| 国产在线看一区| 久久婷婷综合激情| 在线播放国产精品二区一二区四区 | 免费在线视频一区| 亚洲天堂2014| 国产亚洲欧美在线| 成人精品国产福利| 国产自产2019最新不卡| 午夜精品久久久久久久久久 | 日本韩国欧美三级| av电影天堂一区二区在线| 国产一区高清在线| 久久97超碰国产精品超碰| 日韩av午夜在线观看| 日韩一级黄色大片| 粉嫩久久99精品久久久久久夜| 国产精品美女久久久久久久久久久 | 色综合天天综合网国产成人综合天 | 欧美三级资源在线| 91久久精品日日躁夜夜躁欧美| 五月激情丁香一区二区三区| 国产精品久久午夜夜伦鲁鲁| 亚洲精品在线观看视频| 精品国产免费人成电影在线观看四季| 成人午夜又粗又硬又大| 国产成人综合视频| 国产成人av网站| 国产+成+人+亚洲欧洲自线| 国产成人一区在线| 亚洲www啪成人一区二区麻豆| 久久一夜天堂av一区二区三区| 91丨九色丨蝌蚪富婆spa| 成人教育av在线| 看片网站欧美日韩| 国产精品影视网| av午夜精品一区二区三区| 成人在线综合网| 久久精品国产一区二区| 精品亚洲国内自在自线福利| 一级女性全黄久久生活片免费| 精品久久久久一区| 国产亚洲短视频| 日韩欧美成人一区二区| 精品成人a区在线观看| 国产欧美综合色| 伊人开心综合网| 美女视频黄久久| av男人天堂一区| 9191精品国产综合久久久久久| 色婷婷综合久久久久中文一区二区| 国产又黄又大久久| 99久久精品免费看国产免费软件| 国产一区二区三区免费播放| 婷婷亚洲久悠悠色悠在线播放| 亚洲欧美日韩人成在线播放| 久久影视一区二区| 中文字幕日韩精品一区 | 欧美日韩一区成人| 久久综合色综合88| 亚洲精品国产第一综合99久久 | 欧美日韩一区二区在线观看| 日韩欧美自拍偷拍| 亚洲日穴在线视频| 狠狠色伊人亚洲综合成人| 99久久777色| 日韩精品影音先锋| 亚洲风情在线资源站| 国产成人精品综合在线观看 | 欧美一区午夜视频在线观看| 欧美国产日韩精品免费观看| 亚洲香蕉伊在人在线观| 成人影视亚洲图片在线| 欧美电视剧免费观看| 亚洲一区二区欧美日韩| 性感美女极品91精品| 国产成人午夜视频| 日韩午夜在线观看视频| 亚洲一区二区美女| 丝袜美腿成人在线| 91高清视频在线| 国产女人18毛片水真多成人如厕| 中文字幕巨乱亚洲| 国模娜娜一区二区三区| 国产精品一二三区| 日韩精品中午字幕| 中文字幕国产一区二区| 久久精品国产一区二区| 国产91在线观看| 日韩精品中文字幕一区二区三区| 久久免费视频色| 亚洲欧美日韩久久精品| 三级不卡在线观看| 国产精品2024| 欧美精品一区二区久久久| 国产女主播视频一区二区| 老司机精品视频线观看86| 欧美一级二级三级乱码| 视频一区在线播放| 欧美不卡视频一区| 国内一区二区视频| 久久精品亚洲乱码伦伦中文| 精品亚洲欧美一区| 国产香蕉久久精品综合网| 国产经典欧美精品| 日本一区二区视频在线| 国产成人精品影院| 亚洲欧美日韩在线| 国产露脸91国语对白| 亚洲国产高清在线| 91亚洲大成网污www| 一区二区三区四区国产精品| 91国偷自产一区二区三区成为亚洲经典| 日韩欧美国产午夜精品| 美女一区二区在线观看| 色老头久久综合| 午夜伊人狠狠久久| 不卡av在线免费观看| 综合婷婷亚洲小说| 欧美理论电影在线| 精品一区二区三区欧美| 欧美激情一区在线观看| 91福利社在线观看| 狂野欧美性猛交blacked| 亚洲国产精品v| 欧美视频你懂的| 国产精品亚洲а∨天堂免在线| 精品婷婷伊人一区三区三| 蜜桃视频在线观看一区| 91国产免费观看| 激情文学综合丁香| 亚洲黄色小视频| www久久久久| 色一情一伦一子一伦一区| 日韩黄色免费电影| 欧美浪妇xxxx高跟鞋交| 亚洲精品免费一二三区| 日韩一区二区三区在线视频| 亚洲韩国精品一区| 久久综合狠狠综合久久激情| 91在线观看免费视频| 热久久免费视频| 中文字幕一区二区不卡| 成人精品免费网站| 天天综合色天天综合| 国产精品久久久久精k8| 成人av资源网站| 免费在线观看精品| 亚洲视频网在线直播| 色系网站成人免费| 国内久久婷婷综合| 日本欧美大码aⅴ在线播放| **欧美大码日韩| 在线观看免费亚洲| 国产69精品久久久久777| 首页国产欧美久久| 亚洲专区一二三| 亚洲欧美在线aaa| 久久久久久久国产精品影院| 欧美日韩国产综合一区二区| 成人免费视频app| 国模无码大尺度一区二区三区| 国产欧美综合色| 精品福利一区二区三区免费视频| 国产福利视频一区二区三区| 中文欧美字幕免费| 国产日韩av一区|