<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>


        ESPnet2 TTS model


        mio/Artoria

        This model was trained by mio using fate recipe in espnet.


        Demo: How to use in ESPnet2

        Follow the ESPnet installation instructions
        if you haven’t done that already.
        cd espnet
        git checkout 49d18064f22b7508ff24a7fa70c470a65f08f1be
        pip install -e .
        cd egs2/fate/tts1
        ./run.sh --skip_data_prep false --skip_train true --download_model mio/Artoria


        TTS config

        expand

        config: conf/tuning/finetune_vits.yaml
        print_config: false
        log_level: INFO
        dry_run: false
        iterator_type: sequence
        output_dir: exp/22k/tts_fate_saber_vits_finetune_from_jsut
        ngpu: 1
        seed: 777
        num_workers: 4
        num_att_plot: 0
        dist_backend: nccl
        dist_init_method: env://
        dist_world_size: 4
        dist_rank: 0
        local_rank: 0
        dist_master_addr: localhost
        dist_master_port: 46762
        dist_launcher: null
        multiprocessing_distributed: true
        unused_parameters: true
        sharded_ddp: false
        cudnn_enabled: true
        cudnn_benchmark: false
        cudnn_deterministic: false
        collect_stats: false
        write_collected_feats: false
        max_epoch: 10
        patience: null
        val_scheduler_criterion:
        - valid
        - loss
        early_stopping_criterion:
        - valid
        - loss
        - min
        best_model_criterion:
        - - train
        - total_count
        - max
        keep_nbest_models: 10
        nbest_averaging_interval: 0
        grad_clip: -1
        grad_clip_type: 2.0
        grad_noise: false
        accum_grad: 1
        no_forward_run: false
        resume: true
        train_dtype: float32
        use_amp: false
        log_interval: 50
        use_matplotlib: true
        use_tensorboard: false
        create_graph_in_tensorboard: false
        use_wandb: true
        wandb_project: fate
        wandb_id: null
        wandb_entity: null
        wandb_name: vits_train_saber
        wandb_model_log_interval: -1
        detect_anomaly: false
        pretrain_path: null
        init_param:
        - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
        ignore_init_mismatch: false
        freeze_param: []
        num_iters_per_epoch: 1000
        batch_size: 20
        valid_batch_size: null
        batch_bins: 5000000
        valid_batch_bins: null
        train_shape_file:
        - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
        - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
        valid_shape_file:
        - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
        - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
        batch_type: numel
        valid_batch_type: null
        fold_length:
        - 150
        - 204800
        sort_in_batch: descending
        sort_batch: descending
        multiple_iterator: false
        chunk_length: 500
        chunk_shift_ratio: 0.5
        num_cache_chunks: 1024
        train_data_path_and_name_and_type:
        - - dump/22k/raw/train/text
        - text
        - text
        - - dump/22k/raw/train/wav.scp
        - speech
        - sound
        valid_data_path_and_name_and_type:
        - - dump/22k/raw/dev/text
        - text
        - text
        - - dump/22k/raw/dev/wav.scp
        - speech
        - sound
        allow_variable_data_keys: false
        max_cache_size: 0.0
        max_cache_fd: 32
        valid_max_cache_size: null
        optim: adamw
        optim_conf:
        lr: 0.0001
        betas:
        - 0.8
        - 0.99
        eps: 1.0e-09
        weight_decay: 0.0
        scheduler: exponentiallr
        scheduler_conf:
        gamma: 0.999875
        optim2: adamw
        optim2_conf:
        lr: 0.0001
        betas:
        - 0.8
        - 0.99
        eps: 1.0e-09
        weight_decay: 0.0
        scheduler2: exponentiallr
        scheduler2_conf:
        gamma: 0.999875
        generator_first: false
        token_list:
        - <blank>
        - <unk>
        - '1'
        - '2'
        - '0'
        - '3'
        - '4'
        - '-1'
        - '5'
        - a
        - o
        - '-2'
        - i
        - '-3'
        - u
        - e
        - k
        - n
        - t
        - '6'
        - r
        - '-4'
        - s
        - N
        - m
        - pau
        - '7'
        - sh
        - d
        - g
        - w
        - '8'
        - U
        - '-5'
        - I
        - cl
        - h
        - y
        - b
        - '9'
        - j
        - ts
        - ch
        - '-6'
        - z
        - p
        - '-7'
        - f
        - ky
        - ry
        - '-8'
        - gy
        - '-9'
        - hy
        - ny
        - '-10'
        - by
        - my
        - '-11'
        - '-12'
        - '-13'
        - py
        - '-14'
        - '-15'
        - v
        - '10'
        - '-16'
        - '-17'
        - '11'
        - '-21'
        - '-20'
        - '12'
        - '-19'
        - '13'
        - '-18'
        - '14'
        - dy
        - '15'
        - ty
        - '-22'
        - '16'
        - '18'
        - '19'
        - '17'
        - <sos/eos>
        odim: null
        model_conf: {}
        use_preprocessor: true
        token_type: phn
        bpemodel: null
        non_linguistic_symbols: null
        cleaner: jaconv
        g2p: pyopenjtalk_accent_with_pause
        feats_extract: linear_spectrogram
        feats_extract_conf:
        n_fft: 1024
        hop_length: 256
        win_length: null
        normalize: null
        normalize_conf: {}
        tts: vits
        tts_conf:
        generator_type: vits_generator
        generator_params:
        hidden_channels: 192
        spks: -1
        global_channels: -1
        segment_size: 32
        text_encoder_attention_heads: 2
        text_encoder_ffn_expand: 4
        text_encoder_blocks: 6
        text_encoder_positionwise_layer_type: conv1d
        text_encoder_positionwise_conv_kernel_size: 3
        text_encoder_positional_encoding_layer_type: rel_pos
        text_encoder_self_attention_layer_type: rel_selfattn
        text_encoder_activation_type: swish
        text_encoder_normalize_before: true
        text_encoder_dropout_rate: 0.1
        text_encoder_positional_dropout_rate: 0.0
        text_encoder_attention_dropout_rate: 0.1
        use_macaron_style_in_text_encoder: true
        use_conformer_conv_in_text_encoder: false
        text_encoder_conformer_kernel_size: -1
        decoder_kernel_size: 7
        decoder_channels: 512
        decoder_upsample_scales:
        - 8
        - 8
        - 2
        - 2
        decoder_upsample_kernel_sizes:
        - 16
        - 16
        - 4
        - 4
        decoder_resblock_kernel_sizes:
        - 3
        - 7
        - 11
        decoder_resblock_dilations:
        - - 1
        - 3
        - 5
        - - 1
        - 3
        - 5
        - - 1
        - 3
        - 5
        use_weight_norm_in_decoder: true
        posterior_encoder_kernel_size: 5
        posterior_encoder_layers: 16
        posterior_encoder_stacks: 1
        posterior_encoder_base_dilation: 1
        posterior_encoder_dropout_rate: 0.0
        use_weight_norm_in_posterior_encoder: true
        flow_flows: 4
        flow_kernel_size: 5
        flow_base_dilation: 1
        flow_layers: 4
        flow_dropout_rate: 0.0
        use_weight_norm_in_flow: true
        use_only_mean_in_flow: true
        stochastic_duration_predictor_kernel_size: 3
        stochastic_duration_predictor_dropout_rate: 0.5
        stochastic_duration_predictor_flows: 4
        stochastic_duration_predictor_dds_conv_layers: 3
        vocabs: 85
        aux_channels: 513
        discriminator_type: hifigan_multi_scale_multi_period_discriminator
        discriminator_params:
        scales: 1
        scale_downsample_pooling: AvgPool1d
        scale_downsample_pooling_params:
        kernel_size: 4
        stride: 2
        padding: 2
        scale_discriminator_params:
        in_channels: 1
        out_channels: 1
        kernel_sizes:
        - 15
        - 41
        - 5
        - 3
        channels: 128
        max_downsample_channels: 1024
        max_groups: 16
        bias: true
        downsample_scales:
        - 2
        - 2
        - 4
        - 4
        - 1
        nonlinear_activation: LeakyReLU
        nonlinear_activation_params:
        negative_slope: 0.1
        use_weight_norm: true
        use_spectral_norm: false
        follow_official_norm: false
        periods:
        - 2
        - 3
        - 5
        - 7
        - 11
        period_discriminator_params:
        in_channels: 1
        out_channels: 1
        kernel_sizes:
        - 5
        - 3
        channels: 32
        downsample_scales:
        - 3
        - 3
        - 3
        - 3
        - 1
        max_downsample_channels: 1024
        bias: true
        nonlinear_activation: LeakyReLU
        nonlinear_activation_params:
        negative_slope: 0.1
        use_weight_norm: true
        use_spectral_norm: false
        generator_adv_loss_params:
        average_by_discriminators: false
        loss_type: mse
        discriminator_adv_loss_params:
        average_by_discriminators: false
        loss_type: mse
        feat_match_loss_params:
        average_by_discriminators: false
        average_by_layers: false
        include_final_outputs: true
        mel_loss_params:
        fs: 22050
        n_fft: 1024
        hop_length: 256
        win_length: null
        window: hann
        n_mels: 80
        fmin: 0
        fmax: null
        log_base: null
        lambda_adv: 1.0
        lambda_mel: 45.0
        lambda_feat_match: 2.0
        lambda_dur: 1.0
        lambda_kl: 1.0
        sampling_rate: 22050
        cache_generator_outputs: true
        pitch_extract: null
        pitch_extract_conf: {}
        pitch_normalize: null
        pitch_normalize_conf: {}
        energy_extract: null
        energy_extract_conf: {}
        energy_normalize: null
        energy_normalize_conf: {}
        required:
        - output_dir
        - token_list
        version: '202207'
        distributed: true


        Citing ESPnet

        @inproceedings{watanabe2018espnet,
        author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
        title={{ESPnet}: End-to-End Speech Processing Toolkit},
        year={2018},
        booktitle={Proceedings of Interspeech},
        pages={2207--2211},
        doi={10.21437/Interspeech.2018-1456},
        url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
        }
        @inproceedings{hayashi2020espnet,
        title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
        author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
        booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        pages={7654--7658},
        year={2020},
        organization={IEEE}
        }

        or arXiv:
        @misc{watanabe2018espnet,
        title={ESPnet: End-to-End Speech Processing Toolkit},
        author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
        year={2018},
        eprint={1804.00015},
        archivePrefix={arXiv},
        primaryClass={cs.CL}
        }

        數據統計

        數據評估

        mio/Artoria瀏覽人數已經達到590,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:mio/Artoria的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找mio/Artoria的站長進行洽談提供。如該站的IP、PV、跳出率等!

        關于mio/Artoria特別聲明

        本站OpenI提供的mio/Artoria都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:13收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

        相關導航

        Trae官網

        暫無評論

        暫無評論...
        主站蜘蛛池模板: 小小影视日本动漫观看免费| 亚洲国产一区视频| 精品国产_亚洲人成在线高清 | 亚洲嫩草影院在线观看| 99精品视频在线视频免费观看 | 亚洲精品成人区在线观看| 精品在线免费视频| 亚洲精品国产精品国自产观看| 搜日本一区二区三区免费高清视频 | 在线观看亚洲一区二区| 国产高清不卡免费在线| 亚洲AV无码乱码在线观看代蜜桃| 无人在线直播免费观看| 亚洲AV无码之国产精品| 免费一级毛片女人图片| 99久久99这里只有免费的精品| 久久精品亚洲日本佐佐木明希| 最近中文字幕免费2019| 亚洲夂夂婷婷色拍WW47| 亚洲裸男gv网站| 免费福利电影在线观看| 亚洲六月丁香六月婷婷蜜芽| 女人被男人躁的女爽免费视频| 美景之屋4在线未删减免费| 亚洲一区二区视频在线观看| 国产在线一区二区综合免费视频 | 亚洲精品一卡2卡3卡四卡乱码| 午夜免费不卡毛片完整版| 免费大片av手机看片| 亚洲91av视频| 免费黄色app网站| 久久一区二区免费播放| 国产成人精品日本亚洲专一区| 亚洲M码 欧洲S码SSS222| 欧洲人成在线免费| 亚洲AV无码专区亚洲AV桃| 久久国产亚洲观看| 免费黄色大片网站| 久久久免费的精品| 国产亚洲视频在线观看| 亚洲人成在线观看|