国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


ESPnet2 TTS model


mio/Artoria

This model was trained by mio using fate recipe in espnet.


Demo: How to use in ESPnet2

Follow the ESPnet installation instructions
if you haven’t done that already.
cd espnet
git checkout 49d18064f22b7508ff24a7fa70c470a65f08f1be
pip install -e .
cd egs2/fate/tts1
./run.sh --skip_data_prep false --skip_train true --download_model mio/Artoria


TTS config

expand

config: conf/tuning/finetune_vits.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/22k/tts_fate_saber_vits_finetune_from_jsut
ngpu: 1
seed: 777
num_workers: 4
num_att_plot: 0
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 46762
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 10
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- total_count
- max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: -1
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: 50
use_matplotlib: true
use_tensorboard: false
create_graph_in_tensorboard: false
use_wandb: true
wandb_project: fate
wandb_id: null
wandb_entity: null
wandb_name: vits_train_saber
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param:
- downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 1000
batch_size: 20
valid_batch_size: null
batch_bins: 5000000
valid_batch_bins: null
train_shape_file:
- exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
- exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
valid_shape_file:
- exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
- exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/22k/raw/train/text
- text
- text
- - dump/22k/raw/train/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/22k/raw/dev/text
- text
- text
- - dump/22k/raw/dev/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adamw
optim_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
optim2: adamw
optim2_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: false
token_list:
- <blank>
- <unk>
- '1'
- '2'
- '0'
- '3'
- '4'
- '-1'
- '5'
- a
- o
- '-2'
- i
- '-3'
- u
- e
- k
- n
- t
- '6'
- r
- '-4'
- s
- N
- m
- pau
- '7'
- sh
- d
- g
- w
- '8'
- U
- '-5'
- I
- cl
- h
- y
- b
- '9'
- j
- ts
- ch
- '-6'
- z
- p
- '-7'
- f
- ky
- ry
- '-8'
- gy
- '-9'
- hy
- ny
- '-10'
- by
- my
- '-11'
- '-12'
- '-13'
- py
- '-14'
- '-15'
- v
- '10'
- '-16'
- '-17'
- '11'
- '-21'
- '-20'
- '12'
- '-19'
- '13'
- '-18'
- '14'
- dy
- '15'
- ty
- '-22'
- '16'
- '18'
- '19'
- '17'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: jaconv
g2p: pyopenjtalk_accent_with_pause
feats_extract: linear_spectrogram
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
normalize: null
normalize_conf: {}
tts: vits
tts_conf:
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: -1
global_channels: -1
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: conv1d
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: rel_pos
text_encoder_self_attention_layer_type: rel_selfattn
text_encoder_activation_type: swish
text_encoder_normalize_before: true
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: true
use_conformer_conv_in_text_encoder: false
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales:
- 8
- 8
- 2
- 2
decoder_upsample_kernel_sizes:
- 16
- 16
- 4
- 4
decoder_resblock_kernel_sizes:
- 3
- 7
- 11
decoder_resblock_dilations:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
use_weight_norm_in_decoder: true
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: true
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: true
use_only_mean_in_flow: true
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
vocabs: 85
aux_channels: 513
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: AvgPool1d
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 15
- 41
- 5
- 3
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: true
downsample_scales:
- 2
- 2
- 4
- 4
- 1
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
follow_official_norm: false
periods:
- 2
- 3
- 5
- 7
- 11
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 5
- 3
channels: 32
downsample_scales:
- 3
- 3
- 3
- 3
- 1
max_downsample_channels: 1024
bias: true
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
generator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
discriminator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
feat_match_loss_params:
average_by_discriminators: false
average_by_layers: false
include_final_outputs: true
mel_loss_params:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
window: hann
n_mels: 80
fmin: 0
fmax: null
log_base: null
lambda_adv: 1.0
lambda_mel: 45.0
lambda_feat_match: 2.0
lambda_dur: 1.0
lambda_kl: 1.0
sampling_rate: 22050
cache_generator_outputs: true
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: '202207'
distributed: true


Citing ESPnet

@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}

or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}

數據評估

mio/Artoria瀏覽人數已經達到591,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:mio/Artoria的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找mio/Artoria的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于mio/Artoria特別聲明

本站OpenI提供的mio/Artoria都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:13收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        国产精品久久久久久亚洲伦| 色综合色狠狠综合色| 久久精品国产亚洲一区二区三区| 色悠悠久久综合| 亚洲精品久久7777| 在线欧美小视频| 亚洲国产综合91精品麻豆| 精品视频一区 二区 三区| 日韩精品亚洲一区| 精品福利视频一区二区三区| 国模大尺度一区二区三区| 欧美极品另类videosde| 91在线你懂得| 午夜电影一区二区三区| 337p粉嫩大胆色噜噜噜噜亚洲| 成人精品鲁一区一区二区| 亚洲一区在线看| 久久嫩草精品久久久精品一| voyeur盗摄精品| 午夜视频久久久久久| 国产欧美日韩综合精品一区二区| 色综合久久久久综合99| 日韩精品五月天| 中文字幕日韩一区二区| 日韩视频不卡中文| 99re66热这里只有精品3直播| 五月综合激情日本mⅴ| 久久影院午夜论| 欧美乱熟臀69xxxxxx| 成人美女在线视频| 激情综合一区二区三区| 亚洲午夜精品在线| 中文字幕一区二区三区不卡在线| 9191成人精品久久| 91福利资源站| 国产老肥熟一区二区三区| 午夜av一区二区三区| 国产精品青草综合久久久久99| 欧美一区国产二区| 欧美体内she精高潮| av激情成人网| 国产老妇另类xxxxx| 美女视频一区二区三区| 亚洲线精品一区二区三区八戒| 国产精品久久久久久妇女6080 | 91福利社在线观看| 国产精品性做久久久久久| 婷婷亚洲久悠悠色悠在线播放| 日韩毛片精品高清免费| 久久久不卡网国产精品一区| 精品粉嫩aⅴ一区二区三区四区| 欧美日韩国产一级二级| 色综合 综合色| caoporn国产精品| 成人免费视频caoporn| 国产精品一品二品| 国产精品18久久久久久久久久久久| 日本午夜精品一区二区三区电影| 亚洲一区二区三区中文字幕在线| 亚洲三级在线看| 亚洲少妇30p| 亚洲精品视频一区二区| 亚洲视频1区2区| 亚洲自拍与偷拍| 五月激情丁香一区二区三区| 香蕉久久一区二区不卡无毒影院| 亚洲一区二区三区四区在线免费观看 | 亚洲一二三四在线| 亚洲韩国一区二区三区| 午夜精品久久久久久久99樱桃| 亚洲午夜av在线| 蜜桃视频免费观看一区| 久久99最新地址| 国产98色在线|日韩| 成人av在线播放网址| 91丨porny丨在线| 欧美日韩一区二区三区视频| 欧美丰满高潮xxxx喷水动漫 | 97成人超碰视| 欧日韩精品视频| 欧美一卡二卡三卡| 久久久www免费人成精品| 国产精品免费免费| 亚洲一区二区欧美激情| 免费av成人在线| 成人污视频在线观看| 99久久精品国产麻豆演员表| 欧美日韩在线不卡| 久久久久久久久蜜桃| 亚洲精品乱码久久久久久日本蜜臀| 亚洲国产视频网站| 国产一区二区在线观看免费| av亚洲精华国产精华精| 日韩一区二区免费高清| 中文字幕一区二区三区精华液| 亚洲国产你懂的| 高清视频一区二区| 69堂亚洲精品首页| 国产精品久久久久影院老司| 欧美a级理论片| 99re这里只有精品视频首页| 精品久久久久久久久久久久包黑料| 亚洲欧美日韩国产手机在线| 国产乱色国产精品免费视频| 在线成人午夜影院| 亚洲男同1069视频| 成人福利视频网站| 欧美大尺度电影在线| 亚洲一区二区视频| 99久免费精品视频在线观看| 欧美成人一区二区三区| 亚洲18色成人| 91成人免费电影| 国产精品第四页| 国产一区二区免费看| 欧美久久久久久蜜桃| 亚洲欧美成aⅴ人在线观看 | 人人爽香蕉精品| 在线观看视频欧美| 综合自拍亚洲综合图不卡区| 国产乱码精品一区二区三区av | 中文字幕亚洲一区二区av在线 | 日韩视频在线永久播放| 伊人开心综合网| 97久久超碰国产精品| 国产欧美视频在线观看| 国产麻豆9l精品三级站| 日韩免费成人网| 五月综合激情婷婷六月色窝| 欧美视频精品在线| 亚洲大片精品永久免费| 在线观看免费视频综合| 亚洲精品成人少妇| 色天使久久综合网天天| 亚洲视频1区2区| 欧洲精品视频在线观看| 亚洲午夜视频在线| 欧美日韩成人在线一区| 日韩福利电影在线| 精品少妇一区二区三区在线视频| 卡一卡二国产精品| 久久嫩草精品久久久久| 成人污污视频在线观看| 亚洲精选在线视频| 欧美日韩国产bt| 久久精品国产澳门| 国产精品美女久久久久久| 99国产精品久| 日韩二区在线观看| 久久天天做天天爱综合色| 不卡的电影网站| 亚洲国产欧美日韩另类综合| 日韩一区二区三| 国产精品自拍网站| 亚洲视频免费观看| 日韩限制级电影在线观看| 国产福利视频一区二区三区| 中文字幕亚洲在| 91精品免费观看| 国产一区日韩二区欧美三区| 国产精品久久777777| 欧美三级中文字幕| 国产精品一区二区三区四区| 日韩美女啊v在线免费观看| 欧美精品在线一区二区| 国产成人av一区二区| 亚洲一区二区三区四区在线观看| 欧美tickle裸体挠脚心vk| 99久久伊人久久99| 日韩在线a电影| 国产精品乱码一区二区三区软件 | 欧美一级欧美三级| 成人精品视频一区二区三区 | 蜜臀av一区二区三区| 亚洲欧美综合在线精品| 日韩一区二区在线观看视频| 成人av网站在线观看| 免费成人美女在线观看| 亚洲免费在线观看视频| 久久在线免费观看| 9191久久久久久久久久久| 色婷婷国产精品久久包臀| 国产一区二区精品久久| 性久久久久久久久久久久| 中文字幕一区二区三区色视频 | 五月天中文字幕一区二区| 国产精品卡一卡二| 欧美tickle裸体挠脚心vk| 精品视频一区三区九区| 99久久综合精品| 国内精品国产三级国产a久久| 亚洲一本大道在线| 亚洲美女一区二区三区| 国产欧美精品一区二区色综合| 这里是久久伊人| 欧美日韩一区二区三区不卡 | 国产91精品久久久久久久网曝门| 香蕉久久一区二区不卡无毒影院 | 一区二区三区中文在线观看| 中文字幕一区二区日韩精品绯色|