国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


dpr-question_encoder-single-nq-base


Table of Contents

  • Model Details
  • How To Get Started With the Model
  • Uses
  • Risks, Limitations and Biases
  • Training
  • Evaluation
  • Environmental Impact
  • Technical Specifications
  • Citation Information
  • Model Card Authors


Model Details

Model Description: Dense Passage Retrieval (DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. dpr-question_encoder-single-nq-base is the question encoder trained using the Natural Questions (NQ) dataset (Lee et al., 2019; Kwiatkowski et al., 2019).

  • Developed by: See GitHub repo for model developers
  • Model Type: BERT-based encoder
  • Language(s): CC-BY-NC-4.0, also see Code of Conduct
  • License: English
  • Related Models:

    • dpr-ctx_encoder-single-nq-base
    • dpr-reader-single-nq-base
    • dpr-ctx_encoder-multiset-base
    • dpr-question_encoder-multiset-base
    • dpr-reader-multiset-base
  • Resources for more information:

    • Research Paper
    • GitHub Repo
    • Hugging Face DPR docs
    • BERT Base Uncased Model Card


How to Get Started with the Model

Use the code below to get started with the model.
from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"]
embeddings = model(input_ids).pooler_output


Uses


Direct Use

dpr-question_encoder-single-nq-base, dpr-ctx_encoder-single-nq-base, and dpr-reader-single-nq-base can be used for the task of open-domain question answering.


Misuse and Out-of-scope Use

The model should not be used to intentionally create hostile or alienating environments for people. In addition, the set of DPR models was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model.


Risks, Limitations and Biases

CONTENT WARNING: Readers should be aware this section may contain content that is disturbing, offensive, and can propogate historical and current stereotypes.
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al., 2021 and Bender et al., 2021). Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.


Training


Training Data

This model was trained using the Natural Questions (NQ) dataset (Lee et al., 2019; Kwiatkowski et al., 2019). The model authors write that:

[The dataset] was designed for end-to-end question answering. The questions were mined from real Google search queries and the answers were spans in Wikipedia articles identified by annotators.


Training Procedure

The training procedure is described in the associated paper:

Given a collection of M text passages, the goal of our dense passage retriever (DPR) is to index all the passages in a low-dimensional and continuous space, such that it can retrieve efficiently the top k passages relevant to the input question for the reader at run-time.

Our dense passage retriever (DPR) uses a dense encoder EP(·) which maps any text passage to a d- dimensional real-valued vectors and builds an index for all the M passages that we will use for retrieval. At run-time, DPR applies a different encoder EQ(·) that maps the input question to a d-dimensional vector, and retrieves k passages of which vectors are the closest to the question vector.

The authors report that for encoders, they used two independent BERT (Devlin et al., 2019) networks (base, un-cased) and use FAISS (Johnson et al., 2017) during inference time to encode and index passages. See the paper for further details on training, including encoders, inference, positive and negative passages, and in-batch negatives.


Evaluation

The following evaluation information is extracted from the associated paper.


Testing Data, Factors and Metrics

The model developers report the performance of the model on five QA datasets, using the top-k accuracy (k ∈ {20, 100}). The datasets were NQ, TriviaQA, WebQuestions (WQ), CuratedTREC (TREC), and SQuAD v1.1.


Results

Top 20 Top 100
NQ TriviaQA WQ TREC SQuAD NQ TriviaQA WQ TREC SQuAD
78.4 79.4 73.2 79.8 63.2 85.4 85.0 81.4 89.1 77.2

數(shù)據(jù)評(píng)估

facebook/dpr-question_encoder-single-nq-base瀏覽人數(shù)已經(jīng)達(dá)到666,如你需要查詢?cè)撜镜南嚓P(guān)權(quán)重信息,可以點(diǎn)擊"5118數(shù)據(jù)""愛(ài)站數(shù)據(jù)""Chinaz數(shù)據(jù)"進(jìn)入;以目前的網(wǎng)站數(shù)據(jù)參考,建議大家請(qǐng)以愛(ài)站數(shù)據(jù)為準(zhǔn),更多網(wǎng)站價(jià)值評(píng)估因素如:facebook/dpr-question_encoder-single-nq-base的訪問(wèn)速度、搜索引擎收錄以及索引量、用戶體驗(yàn)等;當(dāng)然要評(píng)估一個(gè)站的價(jià)值,最主要還是需要根據(jù)您自身的需求以及需要,一些確切的數(shù)據(jù)則需要找facebook/dpr-question_encoder-single-nq-base的站長(zhǎng)進(jìn)行洽談提供。如該站的IP、PV、跳出率等!

關(guān)于facebook/dpr-question_encoder-single-nq-base特別聲明

本站OpenI提供的facebook/dpr-question_encoder-single-nq-base都來(lái)源于網(wǎng)絡(luò),不保證外部鏈接的準(zhǔn)確性和完整性,同時(shí),對(duì)于該外部鏈接的指向,不由OpenI實(shí)際控制,在2023年 5月 26日 下午5:53收錄時(shí),該網(wǎng)頁(yè)上的內(nèi)容,都屬于合規(guī)合法,后期網(wǎng)頁(yè)的內(nèi)容如出現(xiàn)違規(guī),可以直接聯(lián)系網(wǎng)站管理員進(jìn)行刪除,OpenI不承擔(dān)任何責(zé)任。

相關(guān)導(dǎo)航

蟬鏡AI數(shù)字人

暫無(wú)評(píng)論

暫無(wú)評(píng)論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        国产麻豆精品在线| 在线看日本不卡| 91麻豆精品国产91久久久更新时间| 国内精品免费在线观看| 国产高清无密码一区二区三区| 国产精品亚洲а∨天堂免在线| 97精品国产97久久久久久久久久久久 | 婷婷成人激情在线网| 亚洲一区二区三区自拍| 日韩精品三区四区| 不卡高清视频专区| 在线看日本不卡| 天使萌一区二区三区免费观看| 日韩一卡二卡三卡| 国产精品传媒在线| 亚洲18影院在线观看| 成年人午夜久久久| 一区二区欧美视频| 国产成人av电影| 欧美一区国产二区| 亚洲国产成人tv| 成年人午夜久久久| 亚洲午夜久久久久久久久久久| 日韩欧美一级在线播放| 亚洲国产成人高清精品| 精品国产一区二区三区四区四| 伊人一区二区三区| 成人精品视频网站| 欧美高清在线一区二区| 久久99精品久久久久婷婷| 欧美亚洲国产一区在线观看网站| 中文乱码免费一区二区| 精品一二三四在线| 一区二区三区精品在线| 26uuu久久天堂性欧美| 美女性感视频久久| 欧美色电影在线| 亚洲精品国产第一综合99久久| 日韩一区二区免费视频| 色综合天天综合狠狠| 欧美激情在线一区二区| 91精品国产一区二区三区| 成人免费毛片高清视频| 精品一区二区国语对白| 天堂精品中文字幕在线| 亚洲色图在线播放| 91丝袜美女网| 亚洲欧美日本韩国| 成人一区在线看| 日本中文字幕一区二区视频 | 色婷婷精品久久二区二区蜜臂av| 中文字幕日韩精品一区| 91片在线免费观看| 国产成都精品91一区二区三| 九色综合狠狠综合久久| 日本系列欧美系列| 日韩精品每日更新| 亚洲h精品动漫在线观看| 一区二区在线看| 夜夜嗨av一区二区三区网页| 国产精品久久久久aaaa樱花 | 国产成人午夜视频| 激情另类小说区图片区视频区| 日韩成人免费电影| 麻豆精品一区二区综合av| 日韩精品成人一区二区在线| 日韩电影在线看| 精品一区二区综合| 国产精品影视在线| 99这里只有精品| 美女一区二区三区| 麻豆精品一区二区综合av| 久久av资源网| 亚洲视频资源在线| 亚洲欧洲制服丝袜| 亚洲一二三区在线观看| 亚洲影视在线播放| 日韩国产精品久久久久久亚洲| 日本成人在线电影网| 国产一区二区三区视频在线播放| 国产一区在线看| 成人一级片在线观看| 色偷偷88欧美精品久久久| 欧美一级搡bbbb搡bbbb| 国产日产欧美一区二区三区| 欧美精品久久天天躁| 91在线云播放| 欧美日产国产精品| 日本韩国一区二区三区| 国产成人精品免费在线| 93久久精品日日躁夜夜躁欧美| 欧美日韩高清一区二区不卡| 精品剧情v国产在线观看在线| 日本黄色一区二区| 91精品国产综合久久久久久漫画| 亚洲精品在线电影| 一区二区三区四区乱视频| 日本视频中文字幕一区二区三区| 国产精品18久久久久久久久| 在线观看视频一区二区| 久久久99久久| 久久一夜天堂av一区二区三区| 中文字幕av一区二区三区高| 亚洲夂夂婷婷色拍ww47| 国产成人亚洲综合色影视| 欧美日韩国产经典色站一区二区三区| 精品国产免费一区二区三区四区| 综合色中文字幕| 韩国av一区二区三区在线观看| 色噜噜夜夜夜综合网| 久久综合狠狠综合久久综合88| 一区二区三区**美女毛片| 高清在线观看日韩| 欧美成人午夜电影| 日韩成人免费看| 欧美日韩1234| 亚洲一本大道在线| 在线精品视频免费观看| 日韩一区欧美一区| 国产成人精品aa毛片| 欧美成人免费网站| 日韩福利视频网| 欧美美女一区二区| 亚洲一级在线观看| 在线观看亚洲成人| 一区二区三区91| 欧美最猛黑人xxxxx猛交| 国产精品国产三级国产普通话蜜臀 | 国产精品超碰97尤物18| 久久 天天综合| 91精品国产综合久久国产大片| 一区二区在线观看视频在线观看| 99精品在线观看视频| 国产精品视频一二三区| 国产91丝袜在线观看| 久久婷婷国产综合国色天香| 久久99久久精品| 精品福利在线导航| 国产精品一区二区男女羞羞无遮挡| 精品国产sm最大网站免费看| 狠狠色狠狠色综合| 久久精品一区二区三区av | 亚洲成人动漫精品| 欧美日韩亚洲综合在线 | 激情欧美一区二区| 国产69精品一区二区亚洲孕妇 | 亚洲丝袜精品丝袜在线| 不卡视频在线观看| 亚洲激情在线播放| 欧美综合色免费| 日本系列欧美系列| 久久众筹精品私拍模特| 东方欧美亚洲色图在线| 国产精品国产三级国产a | 欧美一级精品在线| 国产在线播放一区| 中文字幕亚洲在| 欧美中文字幕久久| 久久精品99国产精品| 久久天堂av综合合色蜜桃网| 成人免费高清在线观看| 亚洲一级片在线观看| 26uuu精品一区二区在线观看| a亚洲天堂av| 天天色天天操综合| 久久精品夜色噜噜亚洲a∨| 99国产精品久久久久久久久久| 亚洲国产精品久久不卡毛片| 欧美大白屁股肥臀xxxxxx| 国产在线播精品第三| 亚洲精品伦理在线| 26uuu国产电影一区二区| 91小视频在线观看| 美女网站在线免费欧美精品| 亚洲国产精品黑人久久久| 色吧成人激情小说| 国产一区二区伦理片| 亚洲一区二区三区自拍| 国产亚洲人成网站| 欧美日韩黄色影视| proumb性欧美在线观看| 日本亚洲欧美天堂免费| 一区在线播放视频| 日韩午夜中文字幕| 91福利在线导航| 国产成人免费av在线| 肉丝袜脚交视频一区二区| 欧美极品aⅴ影院| 欧美刺激脚交jootjob| 欧美性色欧美a在线播放| 国产成人免费视| 国产美女精品一区二区三区| 亚洲国产va精品久久久不卡综合| 久久久电影一区二区三区| 亚洲一二三区在线观看| 国产午夜亚洲精品不卡| 日韩一二三四区| 欧美日韩精品一区二区天天拍小说 | 亚洲一区av在线| 亚洲人成在线观看一区二区|