国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


CANINE-s (CANINE pre-trained with subword loss)

Pretrained CANINE model on 104 languages using a masked language modeling (MLM) objective. It was introduced in the paper CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation and first released in this repository.
What’s special about CANINE is that it doesn’t require an explicit tokenizer (such as WordPiece or SentencePiece) as other models like BERT and RoBERTa. Instead, it directly operates at a character level: each character is turned into its Unicode code point.
This means that input processing is trivial and can typically be accomplished as:
input_ids = [ord(char) for char in text]

The ord() function is part of Python, and turns each character into its Unicode code point.
Disclaimer: The team releasing CANINE did not write a model card for this model so this model card has been written by the Hugging Face team.


Model description

CANINE is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion, similar to BERT. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives:

  • Masked language modeling (MLM): one randomly masks part of the inputs, which the model needs to predict. This model (CANINE-s) is trained with a subword loss, meaning that the model needs to predict the identities of subword tokens, while taking characters as input. By reading characters yet predicting subword tokens, the hard token boundary constraint found in other models such as BERT is turned into a soft inductive bias in CANINE.
  • Next sentence prediction (NSP): the model concatenates two sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not.

This way, the model learns an inner representation of multiple languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the CANINE model as inputs.


Intended uses & limitations

You can use the raw model for either masked language modeling or next sentence prediction, but it’s mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at models like GPT2.


How to use

Here is how to use this model:
from transformers import CanineTokenizer, CanineModel
model = CanineModel.from_pretrained('google/canine-s')
tokenizer = CanineTokenizer.from_pretrained('google/canine-s')
inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
outputs = model(**encoding) # forward pass
pooled_output = outputs.pooler_output
sequence_output = outputs.last_hidden_state


Training data

The CANINE model was pretrained on on the multilingual Wikipedia data of mBERT, which includes 104 languages.


BibTeX entry and citation info

@article{DBLP:journals/corr/abs-2103-06874,
author = {Jonathan H. Clark and
Dan Garrette and
Iulia Turc and
John Wieting},
title = {{CANINE:} Pre-training an Efficient Tokenization-Free Encoder for
Language Representation},
journal = {CoRR},
volume = {abs/2103.06874},
year = {2021},
url = {https://arxiv.org/abs/2103.06874},
archivePrefix = {arXiv},
eprint = {2103.06874},
timestamp = {Tue, 16 Mar 2021 11:26:59 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2103-06874.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

數據評估

google/canine-s瀏覽人數已經達到689,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:google/canine-s的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找google/canine-s的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于google/canine-s特別聲明

本站OpenI提供的google/canine-s都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:01收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        韩国女主播一区| 亚洲欧美激情插| 国产精品初高中害羞小美女文| 极品美女销魂一区二区三区 | 欧美日韩一区二区在线视频| 一区二区三区在线观看动漫| 在线观看不卡视频| 免费在线看一区| 国产欧美日韩精品一区| 色综合天天性综合| 日韩精品一级中文字幕精品视频免费观看| 日韩三级在线观看| 国产激情视频一区二区三区欧美| 亚洲欧美色综合| 欧美一区二区三区喷汁尤物| 国产一区二区三区观看| 中文字幕免费在线观看视频一区| 9l国产精品久久久久麻豆| 午夜影院在线观看欧美| 日本一区二区免费在线观看视频| 91在线无精精品入口| 美女精品一区二区| 亚洲乱码国产乱码精品精可以看| 欧美精品久久天天躁| 成人福利视频网站| 久久精品国产秦先生| 亚洲精品国产视频| 国产清纯白嫩初高生在线观看91 | 国产亚洲精品福利| 91精彩视频在线| 国产在线麻豆精品观看| 亚洲另类色综合网站| 欧美精品一区二区三| 欧美影院一区二区三区| 国产成人免费视频网站高清观看视频 | 一区二区高清在线| 国产欧美一区二区精品性色| 欧美日韩精品一区二区三区四区 | 青青国产91久久久久久| 国产精品久久久久婷婷二区次| 678五月天丁香亚洲综合网| 国产suv一区二区三区88区| 青草av.久久免费一区| 亚洲精选视频在线| 亚洲欧洲三级电影| 中文字幕精品一区二区三区精品| 日韩三级精品电影久久久| 欧美乱妇一区二区三区不卡视频| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 亚洲欧洲精品一区二区精品久久久| 久久综合久久久久88| 欧美成人在线直播| 精品国产一区二区三区久久影院 | 国产精品系列在线播放| 麻豆视频观看网址久久| 婷婷成人激情在线网| 亚洲一区二区高清| 亚洲一区二区三区在线看| 亚洲一级二级三级| 亚洲一区二区美女| 亚洲h在线观看| 视频一区二区三区入口| 日本欧美加勒比视频| 免费人成黄页网站在线一区二区| 日韩黄色小视频| 久久精品国产一区二区三区免费看| 美女网站色91| 狠狠色丁香婷婷综合| 国产精一品亚洲二区在线视频| 精品制服美女久久| 国产福利视频一区二区三区| 粉嫩高潮美女一区二区三区| 不卡欧美aaaaa| 91搞黄在线观看| 日韩精品自拍偷拍| 国产亚洲人成网站| 中文字幕在线播放不卡一区| 一区二区三区久久| 日韩高清在线不卡| 成人综合在线观看| 欧美色图在线观看| 精品国免费一区二区三区| 国产精品日日摸夜夜摸av| 一区二区三区视频在线看| 欧美bbbbb| 丰满岳乱妇一区二区三区| 欧美三级日韩在线| xnxx国产精品| 一区二区三区精品在线| 免费人成在线不卡| 99这里只有精品| 欧美一区二区免费视频| 国产精品久久久久久久久久久免费看| 亚洲在线视频免费观看| 精品一区二区三区免费毛片爱| 成人a免费在线看| 宅男噜噜噜66一区二区66| 中文字幕国产一区| 蜜臀av一区二区三区| 成人精品电影在线观看| 日韩欧美在线不卡| 一区二区三区欧美久久| 国v精品久久久网| 日韩一级完整毛片| 亚洲影视在线播放| 成人永久看片免费视频天堂| 日韩小视频在线观看专区| 亚洲免费视频中文字幕| 国产精华液一区二区三区| 337p亚洲精品色噜噜狠狠| 亚洲欧美自拍偷拍色图| 国产九色sp调教91| 精品国产乱码久久久久久夜甘婷婷| 一区二区三区国产豹纹内裤在线| 国产精品一区二区免费不卡| 欧美一区二区女人| 天堂成人免费av电影一区| 在线免费精品视频| 1区2区3区精品视频| 国产盗摄一区二区三区| 久久丝袜美腿综合| 精品一区二区三区免费播放| 欧美精品一卡两卡| 亚洲国产精品综合小说图片区| 97se亚洲国产综合自在线不卡 | 欧美大片在线观看一区二区| 亚洲无线码一区二区三区| 色欧美日韩亚洲| 亚洲婷婷综合色高清在线| 高清av一区二区| 中文幕一区二区三区久久蜜桃| 国产精品一区二区x88av| 国产日韩综合av| 成人性生交大片免费看在线播放| 国产欧美1区2区3区| 成人性生交大合| 日韩美女久久久| 91免费版在线| 亚洲一区二区四区蜜桃| 欧美精品一级二级| 奇米精品一区二区三区四区| 欧美电影免费提供在线观看| 国产一区二区影院| 亚洲国产高清在线观看视频| 91偷拍与自偷拍精品| 一区二区理论电影在线观看| 欧美视频完全免费看| 免费人成黄页网站在线一区二区| 精品国产青草久久久久福利| 成人黄页毛片网站| 亚洲黄色小说网站| 日韩欧美一级精品久久| 国产白丝精品91爽爽久久| 亚洲精品高清在线观看| 5566中文字幕一区二区电影| 激情深爱一区二区| 国产精品不卡视频| 欧美另类高清zo欧美| 久久99精品国产麻豆不卡| 国产精品激情偷乱一区二区∴| 欧美色男人天堂| 国内精品久久久久影院色| 中文字幕一区不卡| 91精品国产综合久久香蕉麻豆| 经典三级一区二区| 亚洲美女视频在线观看| 欧美精品一区二区在线播放| 91麻豆文化传媒在线观看| 日韩黄色免费电影| 亚洲丝袜另类动漫二区| 欧美一区二区观看视频| 91网站最新地址| 国产毛片精品一区| 无码av中文一区二区三区桃花岛| 国产精品久久久久aaaa樱花| 精品国产一区二区三区久久影院 | 亚洲综合小说图片| 久久久精品天堂| 欧美日韩国产综合草草| 国产福利视频一区二区三区| 日韩av二区在线播放| 亚洲精品五月天| 国产日韩欧美综合一区| 91精品国产欧美日韩| 欧美中文一区二区三区| 国产成+人+日韩+欧美+亚洲| 日韩精品一卡二卡三卡四卡无卡| 亚洲欧美乱综合| 欧美国产精品一区二区| 亚洲精品在线三区| 91精品免费在线| 欧美日韩一区不卡| 91免费观看视频在线| www.亚洲精品| 国产成人av在线影院| 韩日精品视频一区| 久久国产成人午夜av影院| 日韩精品电影一区亚洲| 天堂一区二区在线| 亚洲二区在线视频|