国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


WavLM-Base

Microsoft’s WavLM
The base model pretrained on 16kHz sampled speech audio. When using the model, make sure that your speech input is also sampled at 16kHz.
Note: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out this blog for more in-detail explanation of how to fine-tune the model.
The model was pre-trained on 960h of Librispeech.
Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing
Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei
Abstract
Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.
The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm.


Usage

This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be
used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on the SUPERB benchmark.
Note: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence
of phonemes before fine-tuning.


Speech Recognition

To fine-tune the model for speech recognition, see the official speech recognition example.


Speech Classification

To fine-tune the model for speech classification, see the official audio classification example.


Speaker Verification

TODO


Speaker Diarization

TODO


Contribution

The model was contributed by cywang and patrickvonplaten.


License

The official license can be found here

microsoft/wavlm-base

數(shù)據(jù)評(píng)估

microsoft/wavlm-base瀏覽人數(shù)已經(jīng)達(dá)到651,如你需要查詢?cè)撜镜南嚓P(guān)權(quán)重信息,可以點(diǎn)擊"5118數(shù)據(jù)""愛站數(shù)據(jù)""Chinaz數(shù)據(jù)"進(jìn)入;以目前的網(wǎng)站數(shù)據(jù)參考,建議大家請(qǐng)以愛站數(shù)據(jù)為準(zhǔn),更多網(wǎng)站價(jià)值評(píng)估因素如:microsoft/wavlm-base的訪問速度、搜索引擎收錄以及索引量、用戶體驗(yàn)等;當(dāng)然要評(píng)估一個(gè)站的價(jià)值,最主要還是需要根據(jù)您自身的需求以及需要,一些確切的數(shù)據(jù)則需要找microsoft/wavlm-base的站長(zhǎng)進(jìn)行洽談提供。如該站的IP、PV、跳出率等!

關(guān)于microsoft/wavlm-base特別聲明

本站OpenI提供的microsoft/wavlm-base都來源于網(wǎng)絡(luò),不保證外部鏈接的準(zhǔn)確性和完整性,同時(shí),對(duì)于該外部鏈接的指向,不由OpenI實(shí)際控制,在2023年 5月 26日 下午6:01收錄時(shí),該網(wǎng)頁上的內(nèi)容,都屬于合規(guī)合法,后期網(wǎng)頁的內(nèi)容如出現(xiàn)違規(guī),可以直接聯(lián)系網(wǎng)站管理員進(jìn)行刪除,OpenI不承擔(dān)任何責(zé)任。

相關(guān)導(dǎo)航

蟬鏡AI數(shù)字人

暫無評(píng)論

暫無評(píng)論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        视频一区免费在线观看| 91亚洲精华国产精华精华液| 精品视频免费看| 欧美视频中文字幕| 欧美国产一区二区在线观看 | 在线免费观看日本一区| 极品销魂美女一区二区三区| 一区二区三区高清在线| 中文久久乱码一区二区| 国产视频一区在线观看 | 欧美va亚洲va国产综合| 欧美三级午夜理伦三级中视频| 99久久久精品| a级精品国产片在线观看| 国产精品自拍三区| 国产福利91精品| 粉嫩13p一区二区三区| 福利电影一区二区三区| 国产成人在线视频网址| 成人性生交大合| 成人午夜短视频| 成人激情黄色小说| 成人白浆超碰人人人人| av一区二区三区黑人| 成人av综合在线| 色综合久久九月婷婷色综合| 91麻豆国产精品久久| 色诱亚洲精品久久久久久| 91黄色免费看| 欧美丝袜丝交足nylons| 91精品国产综合久久久久久| 欧美日韩三级视频| 日韩一区二区三区电影| 26uuu亚洲婷婷狠狠天堂| 久久先锋影音av鲁色资源网| 中文字幕第一区二区| 国产精品久久久久久久浪潮网站 | 中文字幕高清一区| 国产精品久久久久久久久果冻传媒 | 日韩高清电影一区| 美国十次了思思久久精品导航| 久久97超碰色| 成人免费看黄yyy456| 色妹子一区二区| 欧美剧情电影在线观看完整版免费励志电影 | 美日韩黄色大片| 懂色av一区二区夜夜嗨| 色婷婷av一区二区三区之一色屋| 欧美久久久久久久久中文字幕| 久久综合色鬼综合色| 亚洲免费资源在线播放| 精品影院一区二区久久久| 91在线观看一区二区| 日韩丝袜美女视频| 1区2区3区国产精品| 免费欧美在线视频| 91美女福利视频| 久久亚洲私人国产精品va媚药| ...av二区三区久久精品| 国产一区二区三区最好精华液| 不卡av在线免费观看| 欧美精品第1页| 国产女主播一区| 日韩激情一二三区| 亚洲国产成人午夜在线一区| 亚洲成人免费电影| 国产a级毛片一区| 欧美一区日本一区韩国一区| 国产精品美女久久久久久2018 | 99re免费视频精品全部| 欧美一区二区高清| 亚洲精品免费看| 激情国产一区二区| 欧美中文字幕亚洲一区二区va在线| 久久蜜桃av一区二区天堂| 亚洲国产视频直播| 99国内精品久久| 精品国产乱码久久久久久浪潮| 亚洲国产色一区| 99久久精品免费看国产免费软件| 精品毛片乱码1区2区3区| 亚洲男人的天堂在线观看| 成人激情免费视频| 久久精品一区二区三区四区| 奇米精品一区二区三区在线观看| 91国产免费看| 亚洲欧美电影一区二区| 成人黄色片在线观看| 国产亚洲成aⅴ人片在线观看 | 精品捆绑美女sm三区| 日本欧美一区二区三区乱码| 精品视频在线视频| 午夜av一区二区三区| 欧美日韩dvd在线观看| 亚洲国产欧美另类丝袜| 欧美在线一二三| 性久久久久久久久久久久| 日韩1区2区3区| 欧美在线一区二区| 欧美亚洲高清一区二区三区不卡| 中国av一区二区三区| 国产成人免费网站| 日本一区二区三级电影在线观看| 国产一区二区三区免费在线观看| 欧美成人性福生活免费看| 美女精品一区二区| 久久久久久久久久久久久女国产乱 | 久久这里只有精品首页| 精品综合久久久久久8888| 欧美成人一区二区三区片免费| 老色鬼精品视频在线观看播放| 亚洲精品一区二区三区在线观看| 国产大陆a不卡| ㊣最新国产の精品bt伙计久久| 色又黄又爽网站www久久| 亚洲国产精品久久一线不卡| 91精品国产一区二区| 国产一区二区三区在线观看精品| 国产精品免费视频网站| 色婷婷久久久久swag精品| 亚洲一区欧美一区| 日韩一卡二卡三卡四卡| 国产丶欧美丶日本不卡视频| 亚洲欧美日韩在线| 91精品国产综合久久久蜜臀粉嫩| 国产精品一线二线三线| 玉米视频成人免费看| 欧美一区二区三区在线视频| 成人午夜在线视频| 午夜不卡在线视频| 国产日韩精品视频一区| 欧美在线一二三四区| 国产精品中文字幕欧美| 亚洲国产精品久久不卡毛片| 欧美精品一区二| 欧美日韩中文另类| 成人激情免费网站| 久久精品久久久精品美女| 日韩一区欧美一区| 精品国产乱子伦一区| 欧美伊人久久久久久午夜久久久久| 国产一区二区三区最好精华液| 亚洲国产一二三| 国产精品你懂的在线欣赏| 日韩一区二区精品| 欧美午夜寂寞影院| a级高清视频欧美日韩| 国内一区二区在线| 午夜av电影一区| 一区二区三区日韩精品视频| 久久久久亚洲蜜桃| 欧美一级专区免费大片| 在线亚洲一区观看| av一区二区三区黑人| 国产乱码精品一区二区三区忘忧草 | 狠狠色丁香久久婷婷综合_中| 一区二区三区加勒比av| 国产女人aaa级久久久级| 日韩欧美www| 欧美精品v日韩精品v韩国精品v| 99精品国产热久久91蜜凸| 成人午夜大片免费观看| 国产麻豆精品95视频| 日本欧美韩国一区三区| 日日摸夜夜添夜夜添国产精品 | 日韩一区二区免费视频| 欧美精品久久天天躁| 欧美亚洲愉拍一区二区| 99视频在线观看一区三区| 国产91色综合久久免费分享| 国产精品综合一区二区三区| 激情五月婷婷综合网| 久久国产综合精品| 毛片av中文字幕一区二区| 天堂一区二区在线免费观看| 亚洲国产精品欧美一二99| 亚洲综合一区在线| 亚洲宅男天堂在线观看无病毒| 亚洲美女免费视频| 一区二区在线观看免费| 亚洲精品乱码久久久久| 亚洲乱码日产精品bd | 日韩二区三区在线观看| 三级一区在线视频先锋| 欧美bbbbb| 国产一区二区在线看| 成人激情小说网站| 在线中文字幕一区| 91精品国产综合久久久久久久 | 激情欧美一区二区| 国产老妇另类xxxxx| 国产凹凸在线观看一区二区| 成人午夜av在线| 色猫猫国产区一区二在线视频| 欧美日韩一本到| 精品欧美一区二区三区精品久久| 国产女同性恋一区二区| 一卡二卡三卡日韩欧美| 另类小说欧美激情| 99久久精品国产麻豆演员表|