国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


RoBERTa Base OpenAI Detector


Table of Contents

  • Model Details
  • Uses
  • Risks, Limitations and Biases
  • Training
  • Evaluation
  • Environmental Impact
  • Technical Specifications
  • Citation Information
  • Model Card Authors
  • How To Get Started With the Model


Model Details

Model Description: RoBERTa base OpenAI Detector is the GPT-2 output detector model, obtained by fine-tuning a RoBERTa base model with the outputs of the 1.5B-parameter GPT-2 model. The model can be used to predict if text was generated by a GPT-2 model. This model was released by OpenAI at the same time as OpenAI released the weights of the largest GPT-2 model, the 1.5B parameter version.

  • Developed by: OpenAI, see GitHub Repo and associated paper for full author list
  • Model Type: Fine-tuned transformer-based language model
  • Language(s): English
  • License: MIT
  • Related Models: RoBERTa base, GPT-XL (1.5B parameter version), GPT-Large (the 774M parameter version), GPT-Medium (the 355M parameter version) and GPT-2 (the 124M parameter version)
  • Resources for more information:

    • Research Paper (see, in particular, the section beginning on page 12 about Automated ML-based detection).
    • GitHub Repo
    • OpenAI Blog Post
    • Explore the detector model here


Uses


Direct Use

The model is a classifier that can be used to detect text generated by GPT-2 models. However, it is strongly suggested not to use it as a ChatGPT detector for the purposes of making grave allegations of academic misconduct against undergraduates and others, as this model might give inaccurate results in the case of ChatGPT-generated input.


Downstream Use

The model’s developers have stated that they developed and released the model to help with research related to synthetic text generation, so the model could potentially be used for downstream tasks related to synthetic text generation. See the associated paper for further discussion.


Misuse and Out-of-scope Use

The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model developers discuss the risk of adversaries using the model to better evade detection in their associated paper, suggesting that using the model for evading detection or for supporting efforts to evade detection would be a misuse of the model.


Risks, Limitations and Biases

CONTENT WARNING: Readers should be aware this section may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.


Risks and Limitations

In their associated paper, the model developers discuss the risk that the model may be used by bad actors to develop capabilities for evading detection, though one purpose of releasing the model is to help improve detection research.
In a related blog post, the model developers also discuss the limitations of automated methods for detecting synthetic text and the need to pair automated detection tools with other, non-automated approaches. They write:

We conducted in-house detection research and developed a detection model that has detection rates of ~95% for detecting 1.5B GPT-2-generated text. We believe this is not high enough accuracy for standalone detection and needs to be paired with metadata-based approaches, human judgment, and public education to be more effective.

The model developers also report finding that classifying content from larger models is more difficult, suggesting that detection with automated tools like this model will be increasingly difficult as model sizes increase. The authors find that training detector models on the outputs of larger models can improve accuracy and robustness.


Bias

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by RoBERTa base and GPT-2 1.5B (which this model is built/fine-tuned on) can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups (see the RoBERTa base and GPT-2 XL model cards for more information). The developers of this model discuss these issues further in their paper.


Training


Training Data

The model is a sequence classifier based on RoBERTa base (see the RoBERTa base model card for more details on the RoBERTa base training data) and then fine-tuned using the outputs of the 1.5B GPT-2 model (available here).


Training Procedure

The model developers write that:

We based a sequence classifier on RoBERTaBASE (125 million parameters) and fine-tuned it to classify the outputs from the 1.5B GPT-2 model versus WebText, the dataset we used to train the GPT-2 model.

They later state:

To develop a robust detector model that can accurately classify generated texts regardless of the sampling method, we performed an analysis of the model’s transfer performance.

See the associated paper for further details on the training procedure.


Evaluation

The following evaluation information is extracted from the associated paper.


Testing Data, Factors and Metrics

The model is intended to be used for detecting text generated by GPT-2 models, so the model developers test the model on text datasets, measuring accuracy by:

testing 510-token test examples comprised of 5,000 samples from the WebText dataset and 5,000 samples generated by a GPT-2 model, which were not used during the training.


Results

The model developers find:

Our classifier is able to detect 1.5 billion parameter GPT-2-generated text with approximately 95% accuracy…The model’s accuracy depends on sampling methods used when generating outputs, like temperature, Top-K, and nucleus sampling (Holtzman et al., 2019. Nucleus sampling outputs proved most difficult to correctly classify, but a detector trained using nucleus sampling transfers well across other sampling methods. As seen in Figure 1 [in the paper], we found consistently high accuracy when trained on nucleus sampling.

See the associated paper, Figure 1 (on page 14) and Figure 2 (on page 16) for full results.


Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: Unknown
  • Hours used: Unknown
  • Cloud Provider: Unknown
  • Compute Region: Unknown
  • Carbon Emitted: Unknown


Technical Specifications

The model developers write that:
See the associated paper for further details on the modeling architecture and training details.


Citation Information

@article{solaiman2019release,
title={Release strategies and the social impacts of language models},
author={Solaiman, Irene and Brundage, Miles and Clark, Jack and Askell, Amanda and Herbert-Voss, Ariel and Wu, Jeff and Radford, Alec and Krueger, Gretchen and Kim, Jong Wook and Kreps, Sarah and others},
journal={arXiv preprint arXiv:1908.09203},
year={2019}
}

APA:

  • Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., … & Wang, J. (2019). Release strategies and the social impacts of language models. arXiv preprint arXiv:1908.09203.


Model Card Authors

This model card was written by the team at Hugging Face.


How to Get Started with the Model

This model can be instantiated and run with a Transformers pipeline:
from transformers import pipeline
pipe = pipeline("text-classification", model="roberta-base-openai-detector")
print(pipe("Hello world! Is this content AI-generated?")) # [{'label': 'Real', 'score': 0.8036582469940186}]

數據評估

roberta-base-openai-detector瀏覽人數已經達到724,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:roberta-base-openai-detector的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找roberta-base-openai-detector的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于roberta-base-openai-detector特別聲明

本站OpenI提供的roberta-base-openai-detector都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:04收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        久久精品国产99国产精品| 一本到不卡精品视频在线观看| 精品国产1区2区3区| 久久男人中文字幕资源站| 国产精品久久久久久久蜜臀| 亚洲影院理伦片| 国产主播一区二区| 波波电影院一区二区三区| 欧美麻豆精品久久久久久| 欧美精彩视频一区二区三区| 日日夜夜一区二区| 91在线视频免费91| 国产亚洲午夜高清国产拍精品| 亚洲一区二区高清| 51久久夜色精品国产麻豆| 又紧又大又爽精品一区二区| 国产剧情一区二区| 欧美二区在线观看| 国产真实乱偷精品视频免| 国产精品欧美一区喷水| 国产精品亚洲一区二区三区在线| 国产亚洲视频系列| 色哟哟精品一区| 久久草av在线| 亚洲一区二区三区四区在线免费观看| 日韩欧美一级在线播放| 免费av成人在线| 欧美日韩国产不卡| 亚洲va韩国va欧美va| 91久久线看在观草草青青| 亚洲欧美一区二区三区国产精品| 大美女一区二区三区| 国产精品人成在线观看免费 | 国产乱一区二区| 综合av第一页| 色婷婷综合久久久久中文| 久久精品国产999大香线蕉| 日韩毛片视频在线看| 欧美精品一区二区久久婷婷| 色婷婷亚洲综合| 播五月开心婷婷综合| 国产精品久久久久久久久免费樱桃 | 久久久精品国产免大香伊| 在线观看国产日韩| 首页欧美精品中文字幕| 国产精品理论片在线观看| 日韩精品一区二区三区中文不卡| 91福利社在线观看| 91社区在线播放| 夜夜精品视频一区二区| 欧美乱妇20p| 一本久久精品一区二区| 国产成人8x视频一区二区 | 免费国产亚洲视频| 亚洲一区二区三区激情| 亚洲特黄一级片| 国产精品麻豆视频| 国产精品国模大尺度视频| 中文字幕第一区第二区| 色成年激情久久综合| www.色综合.com| 91亚洲男人天堂| 日本电影欧美片| 欧美日韩一级大片网址| 国产成人自拍高清视频在线免费播放| 亚洲视频小说图片| 亚洲欧美视频一区| 亚洲精品va在线观看| 亚洲综合久久av| 亚洲成人在线网站| 另类成人小视频在线| 久久er99精品| 成人aaaa免费全部观看| 91麻豆免费观看| 欧美日韩一本到| 精品va天堂亚洲国产| 国产精品美日韩| 亚洲精品乱码久久久久久| 亚洲与欧洲av电影| 激情综合色播激情啊| 天天综合色天天综合| 中文字幕一区av| 亚洲精品一区二区三区影院| 久久精品夜色噜噜亚洲a∨| 亚洲欧美视频一区| 久久精品国产99| 99re热这里只有精品视频| 欧美精品日韩精品| 国产女主播在线一区二区| 亚洲视频在线观看三级| 日本免费新一区视频| 亚洲女同女同女同女同女同69| 亚洲精品欧美二区三区中文字幕| 肉色丝袜一区二区| 成人精品高清在线| 欧美久久免费观看| 国产精品少妇自拍| 免费在线观看日韩欧美| 99综合影院在线| 精品久久久三级丝袜| 日韩久久精品一区| 成人欧美一区二区三区黑人麻豆 | 久久久激情视频| 亚洲综合激情另类小说区| 国产乱码精品一区二区三区忘忧草 | 91丨国产丨九色丨pron| 欧美一区二区精品在线| 日韩亚洲欧美高清| 精品国偷自产国产一区| 亚洲一二三四久久| 中文字幕一区二区不卡| 另类小说色综合网站| 欧美写真视频网站| 91麻豆精品国产自产在线| 国产精品美女一区二区| 激情综合色播激情啊| 日韩一区二区中文字幕| 亚洲成年人影院| 欧美伊人久久久久久久久影院| 国产精品久久久久天堂| 国产激情一区二区三区| 日韩欧美国产综合一区 | 视频一区二区不卡| 欧美日韩久久一区二区| 日韩美女视频19| jlzzjlzz欧美大全| 国产精品免费人成网站| 国产精品一区一区| 久久九九久精品国产免费直播| 久久精品国产亚洲aⅴ| 日韩一区二区高清| 天堂蜜桃91精品| 欧美一区二区三区视频免费播放| 亚洲一区二区三区四区五区黄| 91网站在线播放| 成人免费一区二区三区视频| 99re成人精品视频| 亚洲一二三四区| 538在线一区二区精品国产| 丝袜美腿亚洲色图| 日韩精品在线网站| 国产成人av影院| 中文字幕精品在线不卡| 91一区二区三区在线播放| 亚洲激情一二三区| 欧美男女性生活在线直播观看| 三级亚洲高清视频| 26uuu亚洲综合色| 亚洲在线成人精品| 91精品欧美久久久久久动漫| 日本aⅴ亚洲精品中文乱码| 日韩精品中文字幕在线不卡尤物| 激情欧美一区二区| 国产精品久久久久aaaa樱花| 99re这里只有精品首页| 五月激情六月综合| 久久麻豆一区二区| 91久久香蕉国产日韩欧美9色| 日本最新不卡在线| 国产亚洲自拍一区| 日本丰满少妇一区二区三区| 奇米精品一区二区三区在线观看 | 亚洲国产成人91porn| 日韩欧美激情在线| 91麻豆国产在线观看| 热久久免费视频| 国产精品福利在线播放| 精品视频一区三区九区| 国产精品一区在线观看乱码| 亚洲18色成人| 国产精品久久久久国产精品日日| 欧美日本一区二区三区| 国产ts人妖一区二区| 亚洲mv在线观看| 日本一区二区免费在线观看视频 | 99久久精品一区| 精品伊人久久久久7777人| 日韩一级片在线观看| 北岛玲一区二区三区四区| 美女视频黄免费的久久| 日韩欧美一区二区三区在线| 99久久久无码国产精品| 精东粉嫩av免费一区二区三区| 亚洲欧美一区二区三区孕妇| 精品久久久久久久人人人人传媒| 欧美日韩免费电影| av成人动漫在线观看| 国产一区二区三区最好精华液| 欧美激情一区二区三区不卡 | 色婷婷久久一区二区三区麻豆| 久久精品国产在热久久| 亚洲国产日韩a在线播放性色| 国产精品理论片| 国产欧美一区二区精品性色超碰| 91麻豆精品91久久久久同性| 日本韩国欧美三级| 色94色欧美sute亚洲13| 不卡的av电影| 91色.com| 91视频国产资源|