<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        可在手機終端部署,人大等提出全新人物圖片保護模型RID

        AIGC動態8個月前發布 機器之心
        342 0 0

        圖片的防定制化保護只需要幾十毫秒。

        可在手機終端部署,人大等提出全新人物圖片保護模型RID

        原標題:可在手機終端部署,人大等提出全新人物圖片保護模型RID
        文章來源:機器之心
        內容字數:5096字

        Real-time Identity Defenses (RID): Protecting Images from Malicious Personalization of Diffusion Models

        This article summarizes a new model,RID,developed by researchers from Renmin University of China and Sea AI Lab,for real-time protection of personal images from malicious personalization attacks on diffusion models. The model addresses the significant computational cost and time associated with existing image protection methods.

        1. The Problem: Malicious Personalization of Diffusion Models

        Recent advancements in diffusion models allow for personalized image generation. Users can provide a few images of a specific concept (e.g.,a person’s face) to fine-tune a pre-trained diffusion model,enabling the generation of new images of that concept. However,this technology poses a privacy risk,as malicious actors could use publicly available photos to create fake images. Existing protection methods rely on gradient-based optimization to add perturbations to the original images,resulting in high computational costs (minutes to tens of minutes) and significant memory consumption.

        2. RID: A Real-time Solution

        RID offers a novel approach by employing a pre-trained small network to generate perturbations for input images. This allows for real-time protection (tens of milliseconds) and enables deployment on mobile devices. The core of RID is a novel training scheme called Adversarial Score Distillation Sampling (Adv-SDS),inspired by DreamFusion’s score distillation sampling (SDS). While DreamFusion aims to minimize SDS loss for realistic image generation,RID maximizes it to ensure the perturbed image is unrecognizable to the personalized diffusion model.

        3. Adv-SDS and the RID Architecture

        To prevent the optimization from getting stuck in local optima,RID incorporates a regression loss alongside Adv-SDS. A pre-trained dataset of clean images and their corresponding perturbations (generated using methods like AdvDM or Anti-DB) is used for training. The network architecture uses a Diffusion Transformer (DiT) adapted to remove conditional input,focusing solely on perturbation generation. A tanh activation function and scaling constrain the size of the generated perturbations.

        4. Experimental Results and Evaluation

        RID was trained on a filtered subset of the VGG-Face 2 dataset and evaluated on Celeba-HQ. The evaluation involved fine-tuning diffusion models using different methods (Textual Inversion,TI+LoRA,full parameter fine-tuning) on protected and unprotected images. Results demonstrate that RID effectively protects images from personalization,achieving a speed of 8.33 images per second on a single GPU. While quantitative metrics show a slight decrease compared to other methods,qualitative analysis confirms effective protection across various personalization techniques,pre-trained models,and noise levels. RID also shows robustness against black-box attacks and post-processing manipulations.

        5. Conclusion and Future Work

        RID demonstrates robust protection capabilities using SD-series models. Future work includes integrating other DiT architectures into Adv-SDS for improved robustness and exploring the design of more benign perturbations,such as makeup-style alterations.


        聯系作者

        文章來源:機器之心
        作者微信:
        作者簡介:專業的人工智能媒體和產業服務平臺

        閱讀原文
        ? 版權聲明
        蟬鏡AI數字人

        相關文章

        蟬鏡AI數字人

        暫無評論

        暫無評論...
        主站蜘蛛池模板: 亚洲欧洲精品久久| 国产亚洲无线码一区二区| 国产亚洲AV夜间福利香蕉149 | 在线观看人成视频免费无遮挡| 成全高清视频免费观看| 亚洲国产av美女网站| 久久国产免费观看精品3| 亚洲国产精品无码专区| 亚洲AV乱码久久精品蜜桃| a一级爱做片免费| 亚洲精品国产字幕久久不卡| 爱情岛亚洲论坛在线观看| 日本一区免费电影| 免费人妻精品一区二区三区| 午夜电影免费观看| 羞羞网站免费观看| 成人免费的性色视频| 亚洲成人免费网址| 在线a人片天堂免费观看高清| 国产精品高清视亚洲一区二区| 免费看国产成年无码AV片| 亚洲国产系列一区二区三区| 免费专区丝袜脚调教视频| 亚洲国产成人精品无码一区二区| A在线观看免费网站大全| 亚洲午夜无码毛片av久久京东热| 午夜男人一级毛片免费| j8又粗又长又硬又爽免费视频| 青青草原亚洲视频| 1000部拍拍拍18勿入免费视频下载 | 女人被男人躁的女爽免费视频| 亚洲AV无码专区在线电影成人| 免费在线精品视频| 免费不卡在线观看AV| 亚洲va乱码一区二区三区| 国产一区二区视频免费| 中文日本免费高清| 亚洲中文字幕日本无线码| 亚洲国产精品狼友中文久久久| 97人妻精品全国免费视频| 精品丝袜国产自在线拍亚洲|