<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        可在手機終端部署,人大等提出全新人物圖片保護模型RID

        AIGC動態(tài)5個月前發(fā)布 機器之心
        342 0 0

        圖片的防定制化保護只需要幾十毫秒。

        可在手機終端部署,人大等提出全新人物圖片保護模型RID

        原標題:可在手機終端部署,人大等提出全新人物圖片保護模型RID
        文章來源:機器之心
        內(nèi)容字數(shù):5096字

        Real-time Identity Defenses (RID): Protecting Images from Malicious Personalization of Diffusion Models

        This article summarizes a new model,RID,developed by researchers from Renmin University of China and Sea AI Lab,for real-time protection of personal images from malicious personalization attacks on diffusion models. The model addresses the significant computational cost and time associated with existing image protection methods.

        1. The Problem: Malicious Personalization of Diffusion Models

        Recent advancements in diffusion models allow for personalized image generation. Users can provide a few images of a specific concept (e.g.,a person’s face) to fine-tune a pre-trained diffusion model,enabling the generation of new images of that concept. However,this technology poses a privacy risk,as malicious actors could use publicly available photos to create fake images. Existing protection methods rely on gradient-based optimization to add perturbations to the original images,resulting in high computational costs (minutes to tens of minutes) and significant memory consumption.

        2. RID: A Real-time Solution

        RID offers a novel approach by employing a pre-trained small network to generate perturbations for input images. This allows for real-time protection (tens of milliseconds) and enables deployment on mobile devices. The core of RID is a novel training scheme called Adversarial Score Distillation Sampling (Adv-SDS),inspired by DreamFusion’s score distillation sampling (SDS). While DreamFusion aims to minimize SDS loss for realistic image generation,RID maximizes it to ensure the perturbed image is unrecognizable to the personalized diffusion model.

        3. Adv-SDS and the RID Architecture

        To prevent the optimization from getting stuck in local optima,RID incorporates a regression loss alongside Adv-SDS. A pre-trained dataset of clean images and their corresponding perturbations (generated using methods like AdvDM or Anti-DB) is used for training. The network architecture uses a Diffusion Transformer (DiT) adapted to remove conditional input,focusing solely on perturbation generation. A tanh activation function and scaling constrain the size of the generated perturbations.

        4. Experimental Results and Evaluation

        RID was trained on a filtered subset of the VGG-Face 2 dataset and evaluated on Celeba-HQ. The evaluation involved fine-tuning diffusion models using different methods (Textual Inversion,TI+LoRA,full parameter fine-tuning) on protected and unprotected images. Results demonstrate that RID effectively protects images from personalization,achieving a speed of 8.33 images per second on a single GPU. While quantitative metrics show a slight decrease compared to other methods,qualitative analysis confirms effective protection across various personalization techniques,pre-trained models,and noise levels. RID also shows robustness against black-box attacks and post-processing manipulations.

        5. Conclusion and Future Work

        RID demonstrates robust protection capabilities using SD-series models. Future work includes integrating other DiT architectures into Adv-SDS for improved robustness and exploring the design of more benign perturbations,such as makeup-style alterations.


        聯(lián)系作者

        文章來源:機器之心
        作者微信:
        作者簡介:專業(yè)的人工智能媒體和產(chǎn)業(yè)服務平臺

        閱讀原文
        ? 版權聲明
        Trae官網(wǎng)

        相關文章

        Trae官網(wǎng)

        暫無評論

        暫無評論...
        主站蜘蛛池模板: 亚洲变态另类一区二区三区| 亚洲最大视频网站| 白白色免费在线视频| 成人无码区免费A片视频WWW| 精品久久久久久无码免费| 免费一级特黄特色大片在线观看 | 台湾一级毛片永久免费| 日本免费电影一区| 亚洲GV天堂GV无码男同| 蜜臀91精品国产免费观看| 久久久久亚洲AV无码专区网站 | 中文字幕亚洲男人的天堂网络| 麻豆视频免费观看| 亚洲人成电影院在线观看| 九九九精品视频免费| 亚洲一区无码精品色| 毛片在线播放免费观看| 全黄性性激高免费视频| 免费一级全黄少妇性色生活片 | 亚洲中文字幕无码一区二区三区| 韩国免费A级毛片久久| 在线观看免费亚洲| 日韩在线一区二区三区免费视频| 久久久无码精品亚洲日韩软件| 最新久久免费视频| 亚洲人成人网站在线观看| 搡女人免费免费视频观看| 亚洲无限乱码一二三四区| 国产美女无遮挡免费视频| aa级女人大片喷水视频免费| 色播亚洲视频在线观看| 又硬又粗又长又爽免费看| 国产亚洲一区二区三区在线观看| 污网站免费在线观看| 久久精品国产96精品亚洲| 国产麻豆视频免费观看 | 久久国产美女免费观看精品 | 真人做A免费观看| 亚洲网站在线观看| 久久精品网站免费观看| CAOPORM国产精品视频免费|