<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>


        ESPnet2 TTS model


        mio/tokiwa_midori

        mio/tokiwa_midori
        This model was trained by mio using amadeus recipe in espnet.


        Demo: How to use in ESPnet2

        Follow the ESPnet installation instructions
        if you haven’t done that already.
        cd espnet
        git checkout 0232f540a98ece921477b961db8ae019211da9af
        pip install -e .
        cd egs2/amadeus/tts1
        ./run.sh --skip_data_prep false --skip_train true --download_model mio/tokiwa_midori


        TTS config

        expand

        config: conf/tuning/finetune_vits.yaml
        print_config: false
        log_level: INFO
        dry_run: false
        iterator_type: sequence
        output_dir: exp/tts_midori_vits_finetune_from_jsut_32_sentence
        ngpu: 1
        seed: 777
        num_workers: 4
        num_att_plot: 0
        dist_backend: nccl
        dist_init_method: env://
        dist_world_size: null
        dist_rank: null
        local_rank: 0
        dist_master_addr: null
        dist_master_port: null
        dist_launcher: null
        multiprocessing_distributed: false
        unused_parameters: true
        sharded_ddp: false
        cudnn_enabled: true
        cudnn_benchmark: false
        cudnn_deterministic: false
        collect_stats: false
        write_collected_feats: false
        max_epoch: 100
        patience: null
        val_scheduler_criterion:
        - valid
        - loss
        early_stopping_criterion:
        - valid
        - loss
        - min
        best_model_criterion:
        - - train
        - total_count
        - max
        keep_nbest_models: 10
        nbest_averaging_interval: 0
        grad_clip: -1
        grad_clip_type: 2.0
        grad_noise: false
        accum_grad: 1
        no_forward_run: false
        resume: true
        train_dtype: float32
        use_amp: false
        log_interval: 50
        use_matplotlib: true
        use_tensorboard: false
        create_graph_in_tensorboard: false
        use_wandb: true
        wandb_project: midori
        wandb_id: null
        wandb_entity: null
        wandb_name: vits_finetune_midori_from_jsut
        wandb_model_log_interval: -1
        detect_anomaly: false
        pretrain_path: null
        init_param:
        - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
        ignore_init_mismatch: false
        freeze_param: []
        num_iters_per_epoch: 1000
        batch_size: 20
        valid_batch_size: null
        batch_bins: 5000000
        valid_batch_bins: null
        train_shape_file:
        - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
        - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
        valid_shape_file:
        - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
        - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
        batch_type: numel
        valid_batch_type: null
        fold_length:
        - 150
        - 204800
        sort_in_batch: descending
        sort_batch: descending
        multiple_iterator: false
        chunk_length: 500
        chunk_shift_ratio: 0.5
        num_cache_chunks: 1024
        train_data_path_and_name_and_type:
        - - dump/22k/raw/train/text
        - text
        - text
        - - dump/22k/raw/train/wav.scp
        - speech
        - sound
        valid_data_path_and_name_and_type:
        - - dump/22k/raw/dev/text
        - text
        - text
        - - dump/22k/raw/dev/wav.scp
        - speech
        - sound
        allow_variable_data_keys: false
        max_cache_size: 0.0
        max_cache_fd: 32
        valid_max_cache_size: null
        optim: adamw
        optim_conf:
        lr: 0.0001
        betas:
        - 0.8
        - 0.99
        eps: 1.0e-09
        weight_decay: 0.0
        scheduler: exponentiallr
        scheduler_conf:
        gamma: 0.999875
        optim2: adamw
        optim2_conf:
        lr: 0.0001
        betas:
        - 0.8
        - 0.99
        eps: 1.0e-09
        weight_decay: 0.0
        scheduler2: exponentiallr
        scheduler2_conf:
        gamma: 0.999875
        generator_first: false
        token_list:
        - <blank>
        - <unk>
        - '1'
        - '2'
        - '0'
        - '3'
        - '4'
        - '-1'
        - '5'
        - a
        - o
        - '-2'
        - i
        - '-3'
        - u
        - e
        - k
        - n
        - t
        - '6'
        - r
        - '-4'
        - s
        - N
        - m
        - pau
        - '7'
        - sh
        - d
        - g
        - w
        - '8'
        - U
        - '-5'
        - I
        - cl
        - h
        - y
        - b
        - '9'
        - j
        - ts
        - ch
        - '-6'
        - z
        - p
        - '-7'
        - f
        - ky
        - ry
        - '-8'
        - gy
        - '-9'
        - hy
        - ny
        - '-10'
        - by
        - my
        - '-11'
        - '-12'
        - '-13'
        - py
        - '-14'
        - '-15'
        - v
        - '10'
        - '-16'
        - '-17'
        - '11'
        - '-21'
        - '-20'
        - '12'
        - '-19'
        - '13'
        - '-18'
        - '14'
        - dy
        - '15'
        - ty
        - '-22'
        - '16'
        - '18'
        - '19'
        - '17'
        - <sos/eos>
        odim: null
        model_conf: {}
        use_preprocessor: true
        token_type: phn
        bpemodel: null
        non_linguistic_symbols: null
        cleaner: jaconv
        g2p: pyopenjtalk_accent_with_pause
        feats_extract: linear_spectrogram
        feats_extract_conf:
        n_fft: 1024
        hop_length: 256
        win_length: null
        normalize: null
        normalize_conf: {}
        tts: vits
        tts_conf:
        generator_type: vits_generator
        generator_params:
        hidden_channels: 192
        spks: -1
        global_channels: -1
        segment_size: 32
        text_encoder_attention_heads: 2
        text_encoder_ffn_expand: 4
        text_encoder_blocks: 6
        text_encoder_positionwise_layer_type: conv1d
        text_encoder_positionwise_conv_kernel_size: 3
        text_encoder_positional_encoding_layer_type: rel_pos
        text_encoder_self_attention_layer_type: rel_selfattn
        text_encoder_activation_type: swish
        text_encoder_normalize_before: true
        text_encoder_dropout_rate: 0.1
        text_encoder_positional_dropout_rate: 0.0
        text_encoder_attention_dropout_rate: 0.1
        use_macaron_style_in_text_encoder: true
        use_conformer_conv_in_text_encoder: false
        text_encoder_conformer_kernel_size: -1
        decoder_kernel_size: 7
        decoder_channels: 512
        decoder_upsample_scales:
        - 8
        - 8
        - 2
        - 2
        decoder_upsample_kernel_sizes:
        - 16
        - 16
        - 4
        - 4
        decoder_resblock_kernel_sizes:
        - 3
        - 7
        - 11
        decoder_resblock_dilations:
        - - 1
        - 3
        - 5
        - - 1
        - 3
        - 5
        - - 1
        - 3
        - 5
        use_weight_norm_in_decoder: true
        posterior_encoder_kernel_size: 5
        posterior_encoder_layers: 16
        posterior_encoder_stacks: 1
        posterior_encoder_base_dilation: 1
        posterior_encoder_dropout_rate: 0.0
        use_weight_norm_in_posterior_encoder: true
        flow_flows: 4
        flow_kernel_size: 5
        flow_base_dilation: 1
        flow_layers: 4
        flow_dropout_rate: 0.0
        use_weight_norm_in_flow: true
        use_only_mean_in_flow: true
        stochastic_duration_predictor_kernel_size: 3
        stochastic_duration_predictor_dropout_rate: 0.5
        stochastic_duration_predictor_flows: 4
        stochastic_duration_predictor_dds_conv_layers: 3
        vocabs: 85
        aux_channels: 513
        discriminator_type: hifigan_multi_scale_multi_period_discriminator
        discriminator_params:
        scales: 1
        scale_downsample_pooling: AvgPool1d
        scale_downsample_pooling_params:
        kernel_size: 4
        stride: 2
        padding: 2
        scale_discriminator_params:
        in_channels: 1
        out_channels: 1
        kernel_sizes:
        - 15
        - 41
        - 5
        - 3
        channels: 128
        max_downsample_channels: 1024
        max_groups: 16
        bias: true
        downsample_scales:
        - 2
        - 2
        - 4
        - 4
        - 1
        nonlinear_activation: LeakyReLU
        nonlinear_activation_params:
        negative_slope: 0.1
        use_weight_norm: true
        use_spectral_norm: false
        follow_official_norm: false
        periods:
        - 2
        - 3
        - 5
        - 7
        - 11
        period_discriminator_params:
        in_channels: 1
        out_channels: 1
        kernel_sizes:
        - 5
        - 3
        channels: 32
        downsample_scales:
        - 3
        - 3
        - 3
        - 3
        - 1
        max_downsample_channels: 1024
        bias: true
        nonlinear_activation: LeakyReLU
        nonlinear_activation_params:
        negative_slope: 0.1
        use_weight_norm: true
        use_spectral_norm: false
        generator_adv_loss_params:
        average_by_discriminators: false
        loss_type: mse
        discriminator_adv_loss_params:
        average_by_discriminators: false
        loss_type: mse
        feat_match_loss_params:
        average_by_discriminators: false
        average_by_layers: false
        include_final_outputs: true
        mel_loss_params:
        fs: 22050
        n_fft: 1024
        hop_length: 256
        win_length: null
        window: hann
        n_mels: 80
        fmin: 0
        fmax: null
        log_base: null
        lambda_adv: 1.0
        lambda_mel: 45.0
        lambda_feat_match: 2.0
        lambda_dur: 1.0
        lambda_kl: 1.0
        sampling_rate: 22050
        cache_generator_outputs: true
        pitch_extract: null
        pitch_extract_conf: {}
        pitch_normalize: null
        pitch_normalize_conf: {}
        energy_extract: null
        energy_extract_conf: {}
        energy_normalize: null
        energy_normalize_conf: {}
        required:
        - output_dir
        - token_list
        version: '202207'
        distributed: false


        Citing ESPnet

        @inproceedings{watanabe2018espnet,
        author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
        title={{ESPnet}: End-to-End Speech Processing Toolkit},
        year={2018},
        booktitle={Proceedings of Interspeech},
        pages={2207--2211},
        doi={10.21437/Interspeech.2018-1456},
        url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
        }
        @inproceedings{hayashi2020espnet,
        title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
        author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
        booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        pages={7654--7658},
        year={2020},
        organization={IEEE}
        }

        or arXiv:
        @misc{watanabe2018espnet,
        title={ESPnet: End-to-End Speech Processing Toolkit},
        author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
        year={2018},
        eprint={1804.00015},
        archivePrefix={arXiv},
        primaryClass={cs.CL}
        }

        數據評估

        mio/tokiwa_midori瀏覽人數已經達到413,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:mio/tokiwa_midori的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找mio/tokiwa_midori的站長進行洽談提供。如該站的IP、PV、跳出率等!

        關于mio/tokiwa_midori特別聲明

        本站OpenI提供的mio/tokiwa_midori都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:13收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

        相關導航

        蟬鏡AI數字人

        暫無評論

        暫無評論...
        主站蜘蛛池模板: 四虎亚洲精品高清在线观看| 亚洲最大中文字幕| 国产亚洲精品看片在线观看 | 成人性生免费视频| 亚洲第一区在线观看| 亚洲视频一区在线播放| 黄网站在线播放视频免费观看| 三级网站在线免费观看| 黄a大片av永久免费| 亚洲综合国产精品| 五月婷婷免费视频| 成年女人毛片免费播放人| 亚洲精品456人成在线| 成年女性特黄午夜视频免费看| 中文字幕亚洲情99在线| 国产成人免费福利网站| 亚洲免费在线视频播放| 国产一区二区三区免费| 五月婷婷亚洲综合| 亚洲av无码成人精品区一本二本| 中文字幕在线免费观看| 亚洲日产无码中文字幕| 视频一区在线免费观看| 综合亚洲伊人午夜网 | 香蕉视频在线免费看| 在线免费不卡视频| 亚洲一区二区三区免费观看| 三年片在线观看免费观看大全动漫| 成人在线免费看片| 亚洲av无码乱码国产精品fc2| 黄色三级三级免费看| 亚洲精品蜜桃久久久久久| 久青草视频在线观看免费| 亚洲AV无码码潮喷在线观看| 中文毛片无遮挡高潮免费| 美女视频免费看一区二区| 亚洲AV日韩精品久久久久久 | 最近中文字幕mv免费高清在线| 亚洲日韩亚洲另类激情文学| 无码乱肉视频免费大全合集 | 夜色阁亚洲一区二区三区|