国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


ESPnet2 TTS model


mio/tokiwa_midori

mio/tokiwa_midori
This model was trained by mio using amadeus recipe in espnet.


Demo: How to use in ESPnet2

Follow the ESPnet installation instructions
if you haven’t done that already.
cd espnet
git checkout 0232f540a98ece921477b961db8ae019211da9af
pip install -e .
cd egs2/amadeus/tts1
./run.sh --skip_data_prep false --skip_train true --download_model mio/tokiwa_midori


TTS config

expand

config: conf/tuning/finetune_vits.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/tts_midori_vits_finetune_from_jsut_32_sentence
ngpu: 1
seed: 777
num_workers: 4
num_att_plot: 0
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- total_count
- max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: -1
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: 50
use_matplotlib: true
use_tensorboard: false
create_graph_in_tensorboard: false
use_wandb: true
wandb_project: midori
wandb_id: null
wandb_entity: null
wandb_name: vits_finetune_midori_from_jsut
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param:
- downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 1000
batch_size: 20
valid_batch_size: null
batch_bins: 5000000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
valid_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/22k/raw/train/text
- text
- text
- - dump/22k/raw/train/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/22k/raw/dev/text
- text
- text
- - dump/22k/raw/dev/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adamw
optim_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
optim2: adamw
optim2_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: false
token_list:
- <blank>
- <unk>
- '1'
- '2'
- '0'
- '3'
- '4'
- '-1'
- '5'
- a
- o
- '-2'
- i
- '-3'
- u
- e
- k
- n
- t
- '6'
- r
- '-4'
- s
- N
- m
- pau
- '7'
- sh
- d
- g
- w
- '8'
- U
- '-5'
- I
- cl
- h
- y
- b
- '9'
- j
- ts
- ch
- '-6'
- z
- p
- '-7'
- f
- ky
- ry
- '-8'
- gy
- '-9'
- hy
- ny
- '-10'
- by
- my
- '-11'
- '-12'
- '-13'
- py
- '-14'
- '-15'
- v
- '10'
- '-16'
- '-17'
- '11'
- '-21'
- '-20'
- '12'
- '-19'
- '13'
- '-18'
- '14'
- dy
- '15'
- ty
- '-22'
- '16'
- '18'
- '19'
- '17'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: jaconv
g2p: pyopenjtalk_accent_with_pause
feats_extract: linear_spectrogram
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
normalize: null
normalize_conf: {}
tts: vits
tts_conf:
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: -1
global_channels: -1
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: conv1d
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: rel_pos
text_encoder_self_attention_layer_type: rel_selfattn
text_encoder_activation_type: swish
text_encoder_normalize_before: true
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: true
use_conformer_conv_in_text_encoder: false
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales:
- 8
- 8
- 2
- 2
decoder_upsample_kernel_sizes:
- 16
- 16
- 4
- 4
decoder_resblock_kernel_sizes:
- 3
- 7
- 11
decoder_resblock_dilations:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
use_weight_norm_in_decoder: true
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: true
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: true
use_only_mean_in_flow: true
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
vocabs: 85
aux_channels: 513
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: AvgPool1d
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 15
- 41
- 5
- 3
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: true
downsample_scales:
- 2
- 2
- 4
- 4
- 1
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
follow_official_norm: false
periods:
- 2
- 3
- 5
- 7
- 11
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 5
- 3
channels: 32
downsample_scales:
- 3
- 3
- 3
- 3
- 1
max_downsample_channels: 1024
bias: true
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
generator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
discriminator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
feat_match_loss_params:
average_by_discriminators: false
average_by_layers: false
include_final_outputs: true
mel_loss_params:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
window: hann
n_mels: 80
fmin: 0
fmax: null
log_base: null
lambda_adv: 1.0
lambda_mel: 45.0
lambda_feat_match: 2.0
lambda_dur: 1.0
lambda_kl: 1.0
sampling_rate: 22050
cache_generator_outputs: true
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: '202207'
distributed: false


Citing ESPnet

@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}

or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}

數據評估

mio/tokiwa_midori瀏覽人數已經達到415,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:mio/tokiwa_midori的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找mio/tokiwa_midori的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于mio/tokiwa_midori特別聲明

本站OpenI提供的mio/tokiwa_midori都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:13收錄時,該網頁上的內容,都屬于合規(guī)合法,后期網頁的內容如出現違規(guī),可以直接聯(lián)系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        日韩欧美一二三| 日本精品免费观看高清观看| 成熟亚洲日本毛茸茸凸凹| 日韩欧美一区二区在线视频| 美日韩一区二区三区| 日韩欧美卡一卡二| 久久99国产精品成人| 国产婷婷一区二区| 99国产精品久久久| 日韩高清在线电影| 国产亚洲精品7777| 欧美亚洲尤物久久| 久久国产精品99久久人人澡| 亚洲国产高清在线观看视频| 日本福利一区二区| 国内精品久久久久影院色| 国产精品美女久久久久久2018| 欧美综合色免费| 懂色av中文一区二区三区| 亚洲国产va精品久久久不卡综合 | 欧美综合天天夜夜久久| 蜜臀av性久久久久蜜臀aⅴ| 亚洲国产电影在线观看| 欧美日韩高清影院| av爱爱亚洲一区| 老司机精品视频在线| 亚洲日本va在线观看| 久久综合九色综合欧美98| 91色九色蝌蚪| 国产高清精品在线| 久久精品国内一区二区三区| 日韩美女视频19| 久久久久久黄色| 4438x亚洲最大成人网| 91在线观看一区二区| 国产一区二区三区视频在线播放| 亚洲一区二区三区免费视频| 国产精品久久福利| 欧美国产精品v| 久久男人中文字幕资源站| 欧美在线一二三| 91在线视频网址| 99re亚洲国产精品| 成人ar影院免费观看视频| 国产精品亚洲人在线观看| 久久成人18免费观看| 天天操天天综合网| 五月天国产精品| 五月天丁香久久| 日韩在线卡一卡二| 青椒成人免费视频| 麻豆国产精品官网| 久色婷婷小香蕉久久| 免费成人性网站| 精品中文字幕一区二区| 精品一区二区日韩| 国内精品国产三级国产a久久| 美国十次综合导航| 久久精品99国产精品日本| 久久精品国产99| 极品少妇xxxx偷拍精品少妇| 极品瑜伽女神91| 国产成人在线视频播放| 成人爽a毛片一区二区免费| 国产精品一区二区在线观看不卡| 蜜桃久久av一区| 国产九九视频一区二区三区| 国产一区二区三区四区五区入口| 国产精品99久久久久久似苏梦涵 | 2023国产精品| 26uuu久久综合| 国产精品夫妻自拍| 一区二区三区精品视频| 五月天网站亚洲| 韩国中文字幕2020精品| 国产99久久久国产精品潘金网站| 成人午夜av电影| 欧美日韩亚洲高清一区二区| 91精品黄色片免费大全| 日韩视频永久免费| 国产日韩欧美一区二区三区综合| 欧美国产日本视频| 亚洲gay无套男同| 青草国产精品久久久久久| 懂色av噜噜一区二区三区av| 欧美亚洲国产一区二区三区| 26uuu亚洲综合色| 亚洲乱码中文字幕综合| 六月婷婷色综合| 91亚洲精品久久久蜜桃| 欧美精品v国产精品v日韩精品 | 欧美日韩免费在线视频| 久久影音资源网| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆 | 国产欧美一区二区三区鸳鸯浴 | 2021中文字幕一区亚洲| 亚洲精品写真福利| 精品亚洲国内自在自线福利| 欧美性色欧美a在线播放| 久久久久久久国产精品影院| 亚洲国产精品影院| 成人免费视频视频| 欧美精品一区二区三区一线天视频| 1024成人网| 国产精品亚洲综合一区在线观看| 337p亚洲精品色噜噜噜| 亚洲激情一二三区| 成人精品国产福利| 亚洲精品一区二区三区蜜桃下载| 午夜精品一区在线观看| 91视频免费看| 国产精品区一区二区三区| 久久草av在线| 欧美电影一区二区| 亚洲亚洲人成综合网络| 成+人+亚洲+综合天堂| 日韩欧美国产麻豆| 亚洲国产另类精品专区| 在线视频观看一区| 一区二区三区小说| 91国偷自产一区二区开放时间| 国产精品成人免费| 波多野结衣中文字幕一区| 欧美国产一区视频在线观看| 激情综合一区二区三区| 日韩视频一区在线观看| 免费人成网站在线观看欧美高清| 欧美日韩国产欧美日美国产精品| 亚洲尤物在线视频观看| 欧美亚洲尤物久久| 三级一区在线视频先锋| 91精品国产乱码久久蜜臀| 日韩精品一二三| 日韩欧美在线一区二区三区| 免费不卡在线视频| 精品国产凹凸成av人导航| 国内外成人在线| 国产精品色婷婷| 在线看国产一区| 三级亚洲高清视频| 精品国产乱码久久久久久老虎| 蜜桃免费网站一区二区三区| 久久看人人爽人人| 99re在线精品| 三级久久三级久久久| 2014亚洲片线观看视频免费| 粉嫩一区二区三区在线看| 亚洲日本护士毛茸茸| 欧美人与z0zoxxxx视频| 久久成人免费日本黄色| 国产精品二区一区二区aⅴ污介绍| 91色视频在线| 麻豆成人综合网| 国产精品久久久久久久久久免费看| 99久久精品免费看国产| 亚洲国产成人高清精品| 久久综合色之久久综合| 成人激情小说网站| 舔着乳尖日韩一区| 国产亚洲欧美一级| 欧美在线小视频| 国产成人亚洲综合a∨猫咪| 亚洲色图视频免费播放| 欧美日韩大陆在线| 国产成人午夜视频| 日韩电影网1区2区| 中文字幕一区二区不卡| 欧美一级欧美一级在线播放| 成人激情黄色小说| 精彩视频一区二区| 日韩和欧美的一区| 亚洲天堂2016| 精品国产乱码久久久久久免费| 91行情网站电视在线观看高清版| 韩国欧美一区二区| 日韩精品一区第一页| 亚洲欧美日韩国产手机在线 | 日韩黄色在线观看| 国产精品久久久久aaaa樱花| 日韩久久久精品| 欧美性一区二区| 91亚洲精品一区二区乱码| 国产一区日韩二区欧美三区| 亚洲国产精品久久人人爱蜜臀| 国产精品亲子乱子伦xxxx裸| 91精品婷婷国产综合久久性色| 91在线免费看| 成人免费黄色在线| 国产91精品欧美| 国产在线不卡一区| 免费观看久久久4p| 青娱乐精品视频| 日韩综合小视频| 亚洲国产一区二区三区青草影视 | 久久综合久久鬼色中文字| 欧美精品v日韩精品v韩国精品v| 91麻豆免费观看| 91视频国产资源| 色欲综合视频天天天| 99v久久综合狠狠综合久久|