国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


ESPnet2 TTS model


mio/amadeus

This model was trained by mio using amadeus recipe in espnet.


Demo: How to use in ESPnet2

Follow the ESPnet installation instructions
if you haven’t done that already.
cd espnet
git checkout d5b5ec7b2e77bd3e10707141818b7e6c57ac6b3f
pip install -e .
cd egs2/amadeus/tts1
./run.sh --skip_data_prep false --skip_train true --download_model mio/amadeus


TTS config

expand

config: conf/tuning/finetune_vits.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/tts_amadeus_vits_finetune_from_jsut_32_sentence
ngpu: 1
seed: 777
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 2000
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- total_count
- max
keep_nbest_models: 3
nbest_averaging_interval: 0
grad_clip: -1
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: 50
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: true
wandb_project: amadeus
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param:
- downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 5000000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
valid_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/22k/raw/train/text
- text
- text
- - dump/22k/raw/train/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/22k/raw/dev/text
- text
- text
- - dump/22k/raw/dev/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adamw
optim_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
optim2: adamw
optim2_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: false
token_list:
- <blank>
- <unk>
- '1'
- '2'
- '0'
- '3'
- '4'
- '-1'
- '5'
- a
- o
- '-2'
- i
- '-3'
- u
- e
- k
- n
- t
- '6'
- r
- '-4'
- s
- N
- m
- pau
- '7'
- sh
- d
- g
- w
- '8'
- U
- '-5'
- I
- cl
- h
- y
- b
- '9'
- j
- ts
- ch
- '-6'
- z
- p
- '-7'
- f
- ky
- ry
- '-8'
- gy
- '-9'
- hy
- ny
- '-10'
- by
- my
- '-11'
- '-12'
- '-13'
- py
- '-14'
- '-15'
- v
- '10'
- '-16'
- '-17'
- '11'
- '-21'
- '-20'
- '12'
- '-19'
- '13'
- '-18'
- '14'
- dy
- '15'
- ty
- '-22'
- '16'
- '18'
- '19'
- '17'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: jaconv
g2p: pyopenjtalk_accent_with_pause
feats_extract: linear_spectrogram
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
normalize: null
normalize_conf: {}
tts: vits
tts_conf:
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: -1
global_channels: -1
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: conv1d
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: rel_pos
text_encoder_self_attention_layer_type: rel_selfattn
text_encoder_activation_type: swish
text_encoder_normalize_before: true
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: true
use_conformer_conv_in_text_encoder: false
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales:
- 8
- 8
- 2
- 2
decoder_upsample_kernel_sizes:
- 16
- 16
- 4
- 4
decoder_resblock_kernel_sizes:
- 3
- 7
- 11
decoder_resblock_dilations:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
use_weight_norm_in_decoder: true
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: true
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: true
use_only_mean_in_flow: true
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
vocabs: 85
aux_channels: 513
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: AvgPool1d
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 15
- 41
- 5
- 3
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: true
downsample_scales:
- 2
- 2
- 4
- 4
- 1
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
follow_official_norm: false
periods:
- 2
- 3
- 5
- 7
- 11
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 5
- 3
channels: 32
downsample_scales:
- 3
- 3
- 3
- 3
- 1
max_downsample_channels: 1024
bias: true
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
generator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
discriminator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
feat_match_loss_params:
average_by_discriminators: false
average_by_layers: false
include_final_outputs: true
mel_loss_params:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
window: hann
n_mels: 80
fmin: 0
fmax: null
log_base: null
lambda_adv: 1.0
lambda_mel: 45.0
lambda_feat_match: 2.0
lambda_dur: 1.0
lambda_kl: 1.0
sampling_rate: 22050
cache_generator_outputs: true
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: '202207'
distributed: false


Citing ESPnet

@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}

or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}

數據評估

mio/amadeus瀏覽人數已經達到493,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:mio/amadeus的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找mio/amadeus的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于mio/amadeus特別聲明

本站OpenI提供的mio/amadeus都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:13收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        99精品热视频| 欧美一区二区二区| 色综合欧美在线视频区| 国产亚洲欧美在线| 国产精品一二二区| 欧美国产日韩精品免费观看| 成人综合激情网| 亚洲综合成人在线视频| 88在线观看91蜜桃国自产| 蓝色福利精品导航| 欧美激情一区二区三区在线| 欧美午夜片在线观看| 国模无码大尺度一区二区三区| 国产精品福利一区二区| 欧美丰满美乳xxx高潮www| 国产一区二区三区日韩| 亚洲免费观看高清完整版在线观看 | 六月丁香婷婷色狠狠久久| 精品国产乱码久久久久久老虎 | 国产成人精品三级| 亚洲成在人线在线播放| 国产拍欧美日韩视频二区| 欧美日韩免费电影| 成人免费观看av| 美女在线观看视频一区二区| 亚洲欧美日韩电影| 国产无遮挡一区二区三区毛片日本| 欧美少妇性性性| 99精品视频中文字幕| 国产精品综合视频| 青青青爽久久午夜综合久久午夜| 亚洲欧洲综合另类在线| 欧美国产精品中文字幕| 日韩精品中文字幕一区 | 91亚洲国产成人精品一区二三| 男人的j进女人的j一区| 亚洲综合无码一区二区| 国产精品女上位| 久久精品亚洲精品国产欧美| 日韩一区二区三区三四区视频在线观看| 北条麻妃一区二区三区| 国模冰冰炮一区二区| 免费在线看成人av| 日韩**一区毛片| 日韩精品一级中文字幕精品视频免费观看 | 91精品国产麻豆国产自产在线| 99亚偷拍自图区亚洲| 成人午夜视频免费看| 激情另类小说区图片区视频区| 丝袜脚交一区二区| 同产精品九九九| 午夜av一区二区三区| 偷拍一区二区三区四区| 日韩激情视频在线观看| 三级亚洲高清视频| 水蜜桃久久夜色精品一区的特点| 亚洲激情在线激情| 一区av在线播放| 午夜精品福利在线| 久久aⅴ国产欧美74aaa| 国产精品中文字幕欧美| 成人午夜电影小说| 色诱视频网站一区| 欧美日韩一区二区在线观看视频 | 国产欧美一区二区三区鸳鸯浴| wwwwxxxxx欧美| 国产欧美视频一区二区三区| 亚洲国产精品ⅴa在线观看| 亚洲国产精品ⅴa在线观看| 中文字幕一区二区三区蜜月 | 久久夜色精品国产噜噜av| 精品999久久久| 国产人久久人人人人爽| 亚洲综合视频网| 男女性色大片免费观看一区二区| 国产黄色精品视频| 91在线一区二区三区| 欧美日本韩国一区二区三区视频| 欧美成人伊人久久综合网| 日本一区二区免费在线观看视频| 国产精品欧美一区二区三区| 一区二区三区影院| 久久精品二区亚洲w码| 99久久精品99国产精品 | 精品蜜桃在线看| 中文字幕亚洲成人| 三级亚洲高清视频| www.在线欧美| 777久久久精品| 国产精品久久久久久久岛一牛影视| 一区二区视频免费在线观看| 另类小说图片综合网| 91麻豆swag| 欧美sm美女调教| 亚洲一区二区三区中文字幕在线| 精品一区二区三区免费| 欧洲另类一二三四区| 久久影院午夜论| 午夜a成v人精品| 色综合色狠狠天天综合色| 久久久久久久久久久久久夜| 日韩中文欧美在线| 欧美视频一区二区三区| 国产精品热久久久久夜色精品三区| 天天色综合成人网| 91免费版pro下载短视频| 久久久亚洲国产美女国产盗摄 | 91久久国产最好的精华液| 久久久久久综合| 日本欧美一区二区| 欧美午夜精品久久久久久孕妇| 国产精品嫩草99a| 国产精品99久久久久久久vr| 日韩视频国产视频| 日韩黄色免费网站| 欧美人体做爰大胆视频| 一区二区三区成人在线视频| 成人h动漫精品| 欧美经典一区二区| 国产精品白丝av| 国产欧美日韩中文久久| 国产麻豆成人精品| 久久婷婷成人综合色| 国产乱码精品一品二品| 亚洲精品一区在线观看| 精品一区二区三区日韩| 337p粉嫩大胆噜噜噜噜噜91av| 视频一区中文字幕| 欧美一二三四在线| 老汉av免费一区二区三区| 日韩精品中午字幕| 国产原创一区二区三区| 久久精品综合网| 福利电影一区二区三区| 中文一区在线播放| 91网站在线播放| 一区二区三区在线视频免费| 欧美无砖砖区免费| 日韩成人精品在线观看| 日韩精品中午字幕| 高清不卡一二三区| 一区二区三区四区亚洲| 在线精品视频一区二区三四| 亚洲一区二区四区蜜桃| 日韩一区二区三区三四区视频在线观看 | 亚洲国产精品精华液2区45| 成人久久久精品乱码一区二区三区| 国产精品视频九色porn| 97国产一区二区| 亚洲电影一级片| 精品国产在天天线2019| 国产馆精品极品| 亚洲色图欧美偷拍| 欧美另类一区二区三区| 经典三级一区二区| 国产精品美女久久久久高潮| 91免费视频大全| 久久成人综合网| 国产精品电影一区二区| 欧美视频自拍偷拍| 极品少妇xxxx精品少妇偷拍| 国产精品久久久久一区| 在线成人小视频| 成人性生交大片免费看中文网站| 一级日本不卡的影视| 欧美成人艳星乳罩| 色先锋久久av资源部| 精品一区二区在线视频| 一区二区三区在线观看视频| 久久亚洲免费视频| 欧美日韩黄色一区二区| 丁香一区二区三区| 日本在线不卡视频一二三区| 国产精品白丝在线| 欧美成人a∨高清免费观看| 91小视频免费观看| 国产麻豆成人传媒免费观看| 亚洲高清在线精品| **欧美大码日韩| 国产日产欧美一区| 精品日韩99亚洲| 欧美二区三区的天堂| 91免费国产在线| eeuss鲁一区二区三区| 国产伦精品一区二区三区视频青涩| 亚洲国产综合色| 亚洲精品视频在线看| 中文在线一区二区| 国产午夜精品福利| 久久久久久电影| 欧美xxx久久| 欧美一区二区三区在| 欧美日韩亚洲另类| 色欧美日韩亚洲| 91视频国产资源| jlzzjlzz亚洲日本少妇| 北条麻妃国产九九精品视频| 丁香婷婷综合色啪| 成人午夜精品一区二区三区| 国产99精品视频|