国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片

免費(fèi)一鍵AI生圖、快速文生AI視頻


原項(xiàng)目鏈接如下:

mio/amadeus


ESPnet2 TTS model


mio/amadeus

This model was trained by mio using amadeus recipe in espnet.


Demo: How to use in ESPnet2

Follow the ESPnet installation instructions
if you haven’t done that already.
cd espnet
git checkout d5b5ec7b2e77bd3e10707141818b7e6c57ac6b3f
pip install -e .
cd egs2/amadeus/tts1
./run.sh --skip_data_prep false --skip_train true --download_model mio/amadeus


TTS config

expand

config: conf/tuning/finetune_vits.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/tts_amadeus_vits_finetune_from_jsut_32_sentence
ngpu: 1
seed: 777
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 2000
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- total_count
- max
keep_nbest_models: 3
nbest_averaging_interval: 0
grad_clip: -1
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: 50
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: true
wandb_project: amadeus
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param:
- downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 5000000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
valid_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/22k/raw/train/text
- text
- text
- - dump/22k/raw/train/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/22k/raw/dev/text
- text
- text
- - dump/22k/raw/dev/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adamw
optim_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
optim2: adamw
optim2_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: false
token_list:
- <blank>
- <unk>
- '1'
- '2'
- '0'
- '3'
- '4'
- '-1'
- '5'
- a
- o
- '-2'
- i
- '-3'
- u
- e
- k
- n
- t
- '6'
- r
- '-4'
- s
- N
- m
- pau
- '7'
- sh
- d
- g
- w
- '8'
- U
- '-5'
- I
- cl
- h
- y
- b
- '9'
- j
- ts
- ch
- '-6'
- z
- p
- '-7'
- f
- ky
- ry
- '-8'
- gy
- '-9'
- hy
- ny
- '-10'
- by
- my
- '-11'
- '-12'
- '-13'
- py
- '-14'
- '-15'
- v
- '10'
- '-16'
- '-17'
- '11'
- '-21'
- '-20'
- '12'
- '-19'
- '13'
- '-18'
- '14'
- dy
- '15'
- ty
- '-22'
- '16'
- '18'
- '19'
- '17'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: jaconv
g2p: pyopenjtalk_accent_with_pause
feats_extract: linear_spectrogram
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
normalize: null
normalize_conf: {}
tts: vits
tts_conf:
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: -1
global_channels: -1
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: conv1d
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: rel_pos
text_encoder_self_attention_layer_type: rel_selfattn
text_encoder_activation_type: swish
text_encoder_normalize_before: true
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: true
use_conformer_conv_in_text_encoder: false
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales:
- 8
- 8
- 2
- 2
decoder_upsample_kernel_sizes:
- 16
- 16
- 4
- 4
decoder_resblock_kernel_sizes:
- 3
- 7
- 11
decoder_resblock_dilations:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
use_weight_norm_in_decoder: true
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: true
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: true
use_only_mean_in_flow: true
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
vocabs: 85
aux_channels: 513
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: AvgPool1d
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 15
- 41
- 5
- 3
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: true
downsample_scales:
- 2
- 2
- 4
- 4
- 1
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
follow_official_norm: false
periods:
- 2
- 3
- 5
- 7
- 11
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 5
- 3
channels: 32
downsample_scales:
- 3
- 3
- 3
- 3
- 1
max_downsample_channels: 1024
bias: true
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
generator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
discriminator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
feat_match_loss_params:
average_by_discriminators: false
average_by_layers: false
include_final_outputs: true
mel_loss_params:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
window: hann
n_mels: 80
fmin: 0
fmax: null
log_base: null
lambda_adv: 1.0
lambda_mel: 45.0
lambda_feat_match: 2.0
lambda_dur: 1.0
lambda_kl: 1.0
sampling_rate: 22050
cache_generator_outputs: true
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: '202207'
distributed: false


Citing ESPnet

@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}

or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}

數(shù)據(jù)評估

kazusam/kt瀏覽人數(shù)已經(jīng)達(dá)到418,如你需要查詢該站的相關(guān)權(quán)重信息,可以點(diǎn)擊"5118數(shù)據(jù)""愛站數(shù)據(jù)""Chinaz數(shù)據(jù)"進(jìn)入;以目前的網(wǎng)站數(shù)據(jù)參考,建議大家請以愛站數(shù)據(jù)為準(zhǔn),更多網(wǎng)站價(jià)值評估因素如:kazusam/kt的訪問速度、搜索引擎收錄以及索引量、用戶體驗(yàn)等;當(dāng)然要評估一個(gè)站的價(jià)值,最主要還是需要根據(jù)您自身的需求以及需要,一些確切的數(shù)據(jù)則需要找kazusam/kt的站長進(jìn)行洽談提供。如該站的IP、PV、跳出率等!

關(guān)于kazusam/kt特別聲明

本站OpenI提供的kazusam/kt都來源于網(wǎng)絡(luò),不保證外部鏈接的準(zhǔn)確性和完整性,同時(shí),對于該外部鏈接的指向,不由OpenI實(shí)際控制,在2023年 5月 26日 下午6:13收錄時(shí),該網(wǎng)頁上的內(nèi)容,都屬于合規(guī)合法,后期網(wǎng)頁的內(nèi)容如出現(xiàn)違規(guī),可以直接聯(lián)系網(wǎng)站管理員進(jìn)行刪除,OpenI不承擔(dān)任何責(zé)任。

相關(guān)導(dǎo)航

蟬鏡AI數(shù)字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        久久精品欧美一区二区三区不卡| 精品中文字幕一区二区小辣椒| 亚洲欧美日韩精品久久久久| 国产在线播放一区三区四| 精品国产91久久久久久久妲己| 日韩不卡一二三区| 91精品国产麻豆国产自产在线| 日韩精品福利网| 久久久不卡网国产精品二区| 99视频在线精品| 亚洲大片精品永久免费| 精品日产卡一卡二卡麻豆| 国产一区 二区 三区一级| 亚洲视频在线一区观看| 欧美人xxxx| 国产高清无密码一区二区三区| 亚洲三级在线免费| 日韩欧美综合在线| 97久久精品人人做人人爽50路| 午夜国产精品影院在线观看| 久久九九久精品国产免费直播| 色欧美日韩亚洲| 2019国产精品| 色婷婷国产精品| 麻豆成人在线观看| 亚洲精品国产无套在线观 | 亚洲人成网站色在线观看| 欧美午夜片在线观看| 韩国女主播一区二区三区| 最新国产精品久久精品| 欧美色倩网站大全免费| 国产精品影音先锋| 视频一区在线播放| 亚洲品质自拍视频| 国产欧美一区二区精品性色超碰| 欧美精品aⅴ在线视频| 不卡的av网站| 国产乱子伦一区二区三区国色天香| 亚洲精品网站在线观看| 久久蜜桃一区二区| 欧美一区二区三区视频免费播放 | 日韩一区二区三区高清免费看看| 国产不卡一区视频| 久久国产尿小便嘘嘘尿| 婷婷中文字幕综合| 亚洲精品免费在线观看| 中文字幕一区日韩精品欧美| 久久婷婷国产综合国色天香| 欧美一区二区三区在线视频| 欧美日韩在线直播| 欧洲精品视频在线观看| 91美女片黄在线| av在线一区二区| 成人黄色免费短视频| 国产伦理精品不卡| 黄页视频在线91| 精品一区二区三区在线视频| 蜜芽一区二区三区| 免费一区二区视频| 肉肉av福利一精品导航| 亚洲成va人在线观看| 午夜视频在线观看一区| 婷婷一区二区三区| 麻豆91在线播放免费| 九色|91porny| 国产精品99久久久| 成人av资源站| 欧美在线观看一区| 精品久久国产老人久久综合| 欧美一区二区三区精品| 欧美成人女星排名| 国产欧美一区二区精品忘忧草| 国产婷婷一区二区| 亚洲视频在线一区| 石原莉奈在线亚洲二区| 免费观看在线色综合| 国产一区二区按摩在线观看| 国产成人av一区| 91在线无精精品入口| 欧美日韩国产一二三| 欧美一区二区不卡视频| 久久午夜电影网| 亚洲欧美日韩国产综合在线| 午夜电影网一区| 国产v日产∨综合v精品视频| 99精品欧美一区二区三区小说| 欧美在线免费播放| 久久免费国产精品 | 欧美不卡在线视频| 久久久久久久久99精品| 亚洲裸体xxx| 免费成人在线视频观看| 成人免费视频caoporn| 欧美女孩性生活视频| 亚洲精品视频自拍| 日日欢夜夜爽一区| 成人性生交大片免费看中文网站| 91极品美女在线| 久久精品一区二区三区av| 亚洲国产精品久久一线不卡| 国产激情91久久精品导航 | 激情五月播播久久久精品| 成人av影视在线观看| 69堂精品视频| 亚洲欧美经典视频| 国产综合色产在线精品| 欧美日韩在线一区二区| 久久久精品免费观看| 午夜精品福利一区二区三区av| 高清日韩电视剧大全免费| 91精品国产综合久久香蕉的特点| 国产精品国产三级国产普通话三级 | 9色porny自拍视频一区二区| 日韩一区二区免费电影| 亚洲一二三四在线观看| 99久久综合精品| 久久久久久久久蜜桃| 免费在线观看成人| 欧美日韩成人综合在线一区二区| 亚洲色图欧洲色图| 成人av在线电影| 中文字幕av在线一区二区三区| 久久国产免费看| 欧美成人精品福利| 三级影片在线观看欧美日韩一区二区 | 欧美一级搡bbbb搡bbbb| 一区二区激情视频| 色视频成人在线观看免| 亚洲三级理论片| 91碰在线视频| 亚洲精品欧美激情| 日韩一区二区三区免费看| 人妖欧美一区二区| 91精品国产日韩91久久久久久| 日韩vs国产vs欧美| 精品日韩成人av| 国产麻豆精品theporn| 久久影院午夜片一区| 国产乱码精品一区二区三区忘忧草 | 欧美三级视频在线观看| 天天免费综合色| 日韩欧美在线网站| 国产毛片一区二区| 国产精品午夜免费| 在线日韩国产精品| 日本欧美在线观看| 久久亚洲精品国产精品紫薇| 国产精品88888| 亚洲欧美一区二区三区孕妇| 在线一区二区三区四区| 天天色综合天天| 精品久久久久久久久久久院品网| 国产91色综合久久免费分享| 中文字幕一区在线观看视频| 欧美午夜精品一区| 久久99国产精品免费网站| 日本一区二区三区国色天香 | 欧美三级三级三级| 免费观看一级欧美片| 国产精品丝袜一区| 欧美美女直播网站| 国产精品一区二区久久不卡| 亚洲免费在线观看视频| 欧美日韩免费高清一区色橹橹| 蜜臀精品一区二区三区在线观看| 欧美国产精品专区| 欧美日韩大陆在线| 成人福利视频在线| 欧美96一区二区免费视频| 久久精品一区四区| 欧美一区二区三区性视频| 波多野结衣中文字幕一区| 日本最新不卡在线| 综合色中文字幕| 2024国产精品视频| 欧美伦理影视网| 一本一道久久a久久精品综合蜜臀| 卡一卡二国产精品| 麻豆精品视频在线| 亚洲免费在线看| 国产欧美一区二区精品婷婷 | 麻豆国产精品一区二区三区| 久久久久久久综合| 欧美精品高清视频| 97se亚洲国产综合自在线| 国内久久婷婷综合| 亚洲成人高清在线| 久久男人中文字幕资源站| 正在播放一区二区| 日本道色综合久久| 99久久精品国产网站| 国产美女在线精品| 美女视频黄a大片欧美| 午夜欧美在线一二页| 亚洲精品国产视频| 国产精品女主播av| 久久久精品2019中文字幕之3| 日韩欧美亚洲另类制服综合在线| 欧美日韩亚洲综合一区| 成人激情动漫在线观看|