国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片


原項目鏈接如下:

mio/amadeus


ESPnet2 TTS model


mio/amadeus

This model was trained by mio using amadeus recipe in espnet.


Demo: How to use in ESPnet2

Follow the ESPnet installation instructions
if you haven’t done that already.
cd espnet
git checkout d5b5ec7b2e77bd3e10707141818b7e6c57ac6b3f
pip install -e .
cd egs2/amadeus/tts1
./run.sh --skip_data_prep false --skip_train true --download_model mio/amadeus


TTS config

expand

config: conf/tuning/finetune_vits.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/tts_amadeus_vits_finetune_from_jsut_32_sentence
ngpu: 1
seed: 777
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 2000
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- total_count
- max
keep_nbest_models: 3
nbest_averaging_interval: 0
grad_clip: -1
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: 50
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: true
wandb_project: amadeus
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param:
- downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 5000000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
valid_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/22k/raw/train/text
- text
- text
- - dump/22k/raw/train/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/22k/raw/dev/text
- text
- text
- - dump/22k/raw/dev/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adamw
optim_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
optim2: adamw
optim2_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: false
token_list:
- <blank>
- <unk>
- '1'
- '2'
- '0'
- '3'
- '4'
- '-1'
- '5'
- a
- o
- '-2'
- i
- '-3'
- u
- e
- k
- n
- t
- '6'
- r
- '-4'
- s
- N
- m
- pau
- '7'
- sh
- d
- g
- w
- '8'
- U
- '-5'
- I
- cl
- h
- y
- b
- '9'
- j
- ts
- ch
- '-6'
- z
- p
- '-7'
- f
- ky
- ry
- '-8'
- gy
- '-9'
- hy
- ny
- '-10'
- by
- my
- '-11'
- '-12'
- '-13'
- py
- '-14'
- '-15'
- v
- '10'
- '-16'
- '-17'
- '11'
- '-21'
- '-20'
- '12'
- '-19'
- '13'
- '-18'
- '14'
- dy
- '15'
- ty
- '-22'
- '16'
- '18'
- '19'
- '17'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: jaconv
g2p: pyopenjtalk_accent_with_pause
feats_extract: linear_spectrogram
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
normalize: null
normalize_conf: {}
tts: vits
tts_conf:
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: -1
global_channels: -1
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: conv1d
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: rel_pos
text_encoder_self_attention_layer_type: rel_selfattn
text_encoder_activation_type: swish
text_encoder_normalize_before: true
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: true
use_conformer_conv_in_text_encoder: false
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales:
- 8
- 8
- 2
- 2
decoder_upsample_kernel_sizes:
- 16
- 16
- 4
- 4
decoder_resblock_kernel_sizes:
- 3
- 7
- 11
decoder_resblock_dilations:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
use_weight_norm_in_decoder: true
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: true
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: true
use_only_mean_in_flow: true
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
vocabs: 85
aux_channels: 513
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: AvgPool1d
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 15
- 41
- 5
- 3
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: true
downsample_scales:
- 2
- 2
- 4
- 4
- 1
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
follow_official_norm: false
periods:
- 2
- 3
- 5
- 7
- 11
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 5
- 3
channels: 32
downsample_scales:
- 3
- 3
- 3
- 3
- 1
max_downsample_channels: 1024
bias: true
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
generator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
discriminator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
feat_match_loss_params:
average_by_discriminators: false
average_by_layers: false
include_final_outputs: true
mel_loss_params:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
window: hann
n_mels: 80
fmin: 0
fmax: null
log_base: null
lambda_adv: 1.0
lambda_mel: 45.0
lambda_feat_match: 2.0
lambda_dur: 1.0
lambda_kl: 1.0
sampling_rate: 22050
cache_generator_outputs: true
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: '202207'
distributed: false


Citing ESPnet

@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}

or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}

數據評估

kazusam/kt瀏覽人數已經達到417,如你需要查詢該站的相關權重信息,可以點擊"5118數據""愛站數據""Chinaz數據"進入;以目前的網站數據參考,建議大家請以愛站數據為準,更多網站價值評估因素如:kazusam/kt的訪問速度、搜索引擎收錄以及索引量、用戶體驗等;當然要評估一個站的價值,最主要還是需要根據您自身的需求以及需要,一些確切的數據則需要找kazusam/kt的站長進行洽談提供。如該站的IP、PV、跳出率等!

關于kazusam/kt特別聲明

本站OpenI提供的kazusam/kt都來源于網絡,不保證外部鏈接的準確性和完整性,同時,對于該外部鏈接的指向,不由OpenI實際控制,在2023年 5月 26日 下午6:13收錄時,該網頁上的內容,都屬于合規合法,后期網頁的內容如出現違規,可以直接聯系網站管理員進行刪除,OpenI不承擔任何責任。

相關導航

蟬鏡AI數字人

暫無評論

暫無評論...
国产精品亚洲mnbav网站_成人午夜亚洲精品无码网站_日韩va亚洲va欧洲va国产_亚洲欧洲精品成人久久曰影片
<span id="3dn8r"></span>
    1. <span id="3dn8r"><optgroup id="3dn8r"></optgroup></span><li id="3dn8r"><meter id="3dn8r"></meter></li>

        欧美一区二视频| 国内精品视频666| 亚洲bt欧美bt精品777| 91丝袜美腿高跟国产极品老师| 国产精品国产a级| 99国产精品久久久| 亚洲精品成a人| 在线播放91灌醉迷j高跟美女| 青青草原综合久久大伊人精品优势| 精品理论电影在线| 成人av网站大全| 天堂蜜桃一区二区三区| 久久综合九色综合97_久久久| 成人国产精品免费网站| 日本欧洲一区二区| 国产精品久久久久久久久久久免费看 | 国产成a人无v码亚洲福利| 国产精品久久久久久久久快鸭 | 欧美丝袜丝交足nylons图片| 日韩高清不卡一区二区三区| 精品理论电影在线| 91免费观看视频在线| 免费日本视频一区| 中文字幕日韩欧美一区二区三区| 欧美伦理影视网| 99在线视频精品| 精品一区二区三区欧美| 亚洲综合图片区| 国产欧美日韩视频一区二区| 5858s免费视频成人| 成人h精品动漫一区二区三区| 免费美女久久99| 一区二区三区中文字幕电影| www国产成人| 欧美日韩一区三区| 99久久婷婷国产综合精品| 日本v片在线高清不卡在线观看| 国产精品亲子伦对白| 日韩一区二区麻豆国产| 色哟哟在线观看一区二区三区| 国内成+人亚洲+欧美+综合在线| 亚洲一区二区三区美女| 综合久久综合久久| 国产欧美一区二区三区网站| 日韩欧美亚洲另类制服综合在线| 91免费精品国自产拍在线不卡| 极品尤物av久久免费看| 日韩在线一二三区| 亚洲一线二线三线久久久| 亚洲国产精品二十页| 久久亚洲综合色一区二区三区 | 成人午夜激情在线| 国产一区二区三区不卡在线观看| 亚洲大尺度视频在线观看| 亚洲欧美自拍偷拍色图| 中文字幕久久午夜不卡| 久久久久99精品一区| 精品免费日韩av| 日韩欧美一级二级| 精品国产区一区| 欧美大肚乱孕交hd孕妇| 欧美一级电影网站| 日韩一级免费一区| 日韩欧美色电影| 精品av久久707| 久久精品视频在线免费观看| 久久青草欧美一区二区三区| 久久午夜羞羞影院免费观看| 久久久精品欧美丰满| 国产色产综合产在线视频| 久久久三级国产网站| 中文字幕国产一区二区| 国产精品不卡在线| 亚洲精选免费视频| 亚洲专区一二三| 午夜视频一区二区三区| 午夜久久久影院| 人人爽香蕉精品| 国产综合一区二区| 成人免费看黄yyy456| av不卡在线播放| 欧美在线不卡视频| 日韩三级在线观看| 国产午夜亚洲精品羞羞网站| 欧美国产日韩亚洲一区| 亚洲摸摸操操av| 亚洲aⅴ怡春院| 久久av资源站| 成人午夜激情在线| 欧美日韩在线播放| 亚洲精品一区二区三区香蕉| 中文字幕免费观看一区| 夜夜嗨av一区二区三区中文字幕| 亚洲不卡一区二区三区| 黄色成人免费在线| 日本乱人伦一区| 日韩久久免费av| 国产精品进线69影院| 亚洲国产日韩精品| 国模冰冰炮一区二区| 在线精品视频一区二区三四| 日韩免费成人网| 亚洲人吸女人奶水| 久久精品久久精品| 色噜噜狠狠成人中文综合| 欧美一级黄色片| 亚洲免费成人av| 国产福利一区二区三区视频在线| 色88888久久久久久影院按摩| 精品国产乱码久久久久久久久 | 国内精品第一页| 91老师片黄在线观看| 欧美va亚洲va国产综合| 亚洲另类一区二区| 国产精品一二三四五| 91精品国产欧美一区二区成人| 中文字幕亚洲欧美在线不卡| 理论电影国产精品| 欧美日韩在线观看一区二区| 中文字幕亚洲一区二区av在线| 激情成人午夜视频| 欧美群妇大交群的观看方式| 中文字幕在线一区| 成人性生交大片免费看中文网站| 欧美一区在线视频| 亚洲宅男天堂在线观看无病毒| 成人午夜伦理影院| 国产拍欧美日韩视频二区| 久久精品国产澳门| 日韩精品中文字幕一区二区三区 | 日韩欧美一级精品久久| 五月激情六月综合| 欧美视频一区二区| 亚洲精品高清在线| 91毛片在线观看| 最新国产の精品合集bt伙计| 国产成人精品aa毛片| 国产日产精品一区| 国产精品一级二级三级| 国产日韩欧美精品一区| 国产精品综合网| 国产欧美一区二区精品性色超碰 | 免费观看久久久4p| 日韩色在线观看| 国产一区二区三区免费在线观看| 日韩写真欧美这视频| 久久精品国产澳门| 久久综合视频网| 成人国产精品免费观看动漫| 亚洲欧洲精品成人久久奇米网| 成人激情免费网站| 国产精品久久久爽爽爽麻豆色哟哟| 成人黄色777网| 一区二区三区四区av| 欧美一区二区在线免费观看| 美女性感视频久久| 久久精品这里都是精品| 色综合久久综合| 日韩av电影一区| 久久免费看少妇高潮| 97国产一区二区| 首页欧美精品中文字幕| 精品久久人人做人人爱| 成人免费毛片片v| 五月综合激情日本mⅴ| www国产精品av| 欧美性猛交一区二区三区精品| 日韩电影在线看| 国产欧美日本一区视频| 欧美午夜在线一二页| 久久99久久99精品免视看婷婷| 中文无字幕一区二区三区| 在线免费观看日本一区| 韩国女主播成人在线| 亚洲精品国产无天堂网2021| 日韩美女在线视频| 色999日韩国产欧美一区二区| 麻豆精品一区二区av白丝在线| 国产精品美女久久久久久久| 欧美精品一二三| 成人高清在线视频| 蜜乳av一区二区三区| 亚洲码国产岛国毛片在线| 久久亚洲捆绑美女| 欧美美女黄视频| 91丨porny丨户外露出| 激情六月婷婷综合| 亚洲大型综合色站| 1区2区3区国产精品| 日韩精品一区二区三区视频在线观看 | 欧洲一区二区三区免费视频| 激情综合色播五月| 丝袜美腿成人在线| 亚洲欧美乱综合| 国产欧美日韩久久| 精品国产乱码久久久久久免费| 欧美日韩免费高清一区色橹橹 | 欧美羞羞免费网站| 白白色 亚洲乱淫| 国产乱子轮精品视频|